Cargando…
Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
The microbiome-wide association studies are to figure out the relationship between microorganisms and humans, with the goal of discovering relevant biomarkers to guide disease diagnosis. However, the microbiome data is complex, with high noise and dimensions. Traditional machine learning methods are...
Autores principales: | Zhu, Qiang, Jiang, Xingpeng, Zhu, Qing, Pan, Min, He, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883002/ https://www.ncbi.nlm.nih.gov/pubmed/31824573 http://dx.doi.org/10.3389/fgene.2019.01182 |
Ejemplares similares
-
Corrigendum: Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
por: Zhu, Qiang, et al.
Publicado: (2020) -
Hierarchical Microbial Functions Prediction by Graph Aggregated Embedding
por: Hou, Yujie, et al.
Publicado: (2021) -
Predicting lncRNA-protein interactions with bipartite graph embedding and deep graph neural networks
por: Ma, Yuzhou, et al.
Publicado: (2023) -
Editorial: Graph Embedding Methods for Multiple-Omics Data Analysis
por: Lan, Wei, et al.
Publicado: (2021) -
Comparative Analysis of Unsupervised Protein Similarity Prediction Based on Graph Embedding
por: Zhang, Yuanyuan, et al.
Publicado: (2021)