Cargando…
Phenotype Prediction and Genome-Wide Association Study Using Deep Convolutional Neural Network of Soybean
Genomic selection uses single-nucleotide polymorphisms (SNPs) to predict quantitative phenotypes for enhancing traits in breeding populations and has been widely used to increase breeding efficiency for plants and animals. Existing statistical methods rely on a prior distribution assumption of imput...
Autores principales: | Liu, Yang, Wang, Duolin, He, Fei, Wang, Juexin, Joshi, Trupti, Xu, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883005/ https://www.ncbi.nlm.nih.gov/pubmed/31824557 http://dx.doi.org/10.3389/fgene.2019.01091 |
Ejemplares similares
-
Sparse Convolutional Neural Networks for Genome-Wide Prediction
por: Waldmann, Patrik, et al.
Publicado: (2020) -
Breast cancer detection: Shallow convolutional neural network against deep convolutional neural networks based approach
por: Das, Himanish Shekhar, et al.
Publicado: (2023) -
G2PDeep: a web-based deep-learning framework for quantitative phenotype prediction and discovery of genomic markers
por: Zeng, Shuai, et al.
Publicado: (2021) -
Using Local Convolutional Neural Networks for Genomic Prediction
por: Pook, Torsten, et al.
Publicado: (2020) -
Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks
por: Wang, Juexin, et al.
Publicado: (2020)