Cargando…

An attenuated Zika virus NS4B protein mutant is a potent inducer of antiviral immune responses

Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of re...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Guangyu, Adam, Awadalkareem, Luo, Huanle, Shan, Chao, Cao, Zengguo, Fontes-Garfias, Camila R., Sarathy, Vanessa V., Teleki, Cody, Winkelmann, Evandro R., Liang, Yuejin, Sun, Jiaren, Bourne, Nigel, Barrett, Alan D. T., Shi, Pei-Yong, Wang, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883050/
https://www.ncbi.nlm.nih.gov/pubmed/31815005
http://dx.doi.org/10.1038/s41541-019-0143-3
Descripción
Sumario:Live attenuated vaccines (LAVs) are one of the most important strategies to control flavivirus diseases. The flavivirus nonstructural (NS) 4B proteins are a critical component of both the virus replication complex and evasion of host innate immunity. Here we have used site-directed mutagenesis of residues in the highly conserved N-terminal and central hydrophobic regions of Zika virus (ZIKV) NS4B protein to identify candidate attenuating mutations. Three single-site mutants were generated, of which the NS4B-C100S mutant was more attenuated than the other two mutants (NS4B-C100A and NS4B-P36A) in two immunocompromised mouse models of fatal ZIKV disease. The ZIKV NS4B-C100S mutant triggered stronger type 1 interferons and interleukin-6 production, and higher ZIKV-specific CD4(+) and CD8(+) T-cell responses, but induced similar titers of neutralization antibodies compared with the parent wild-type ZIKV strain and a previously reported candidate ZIKV LAV with a 10-nucleotide deletion in 3′-UTR (ZIKV-3′UTR-Δ10). Vaccination with ZIKV NS4B-C100S protected mice from subsequent WT ZIKV challenge. Furthermore, either passive immunization with ZIKV NS4B-C100S immune sera or active immunization with ZIKV NS4B-C100S followed by the depletion of T cells affords full protection from lethal WT ZIKV challenge. In summary, our results suggest that the ZIKV NS4B-C100S mutant may serve as a candidate ZIKV LAV due to its attenuated phenotype and high immunogenicity.