Cargando…

Functional analysis of prv-miR-LLT11a encoded by pseudorabies virus

Viral-encoded microRNAs (miRNAs) have vital roles in the regulation of virus replications and host immune responses. The results of previous studies have indicated that miRNA clusters are involved in the replication and virulence of the pseudorabies virus (PRV), which may potentially lead to immune...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Huimin, Yang, Li, Shi, Zhibin, Lv, Ruiqi, Yang, Xia, Wang, Chuanqing, Chen, Lu, Chang, Hongtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Society of Veterinary Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883196/
https://www.ncbi.nlm.nih.gov/pubmed/31775195
http://dx.doi.org/10.4142/jvs.2019.20.e68
Descripción
Sumario:Viral-encoded microRNAs (miRNAs) have vital roles in the regulation of virus replications and host immune responses. The results of previous studies have indicated that miRNA clusters are involved in the replication and virulence of the pseudorabies virus (PRV), which may potentially lead to immune escape or facilitation of PRV replication. This study's previous research revealed that prv-miR-LLT11a was differentially expressed during PRV infection. The present study's results have demonstrated that prv-miR-LLT11a could significantly inhibit PRV replication. It was further determined that SLA-1 was the target gene of prv-miR-LLT11a, and simultaneously, that overexpression of prv-miR-LLT11a could downregulate the mRNA and protein levels of SLA-1 in a dose-independent manner. Furthermore, the present study also observed that prv-miR-LLT11a can downregulate TAP1 expression. Our findings provide a better understanding of the molecular mechanism involved in the effects of prv-miR-LLT11a on SLA-1 and TAP1 as well as its involvement in immune system evasion of PRV.