Cargando…

1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells

BACKGROUND: To investigate the potential of Catharanthus roseus leaf aqueous crude extract (CRACE) as a regulator of adipocyte development and function. METHODS: 3T3-L1 adipogenesis model was used to investigate the effect of CRACE on adipogenesis. 3T3-L1 preadipocytes (for adipogenic differentiatio...

Descripción completa

Detalles Bibliográficos
Autores principales: Borah, Anuj Kumar, Singh, Archana, Yasmin, Rafika, Doley, Robin, Mattaparthi, Venkata Satish Kumar, Saha, Sougata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883588/
https://www.ncbi.nlm.nih.gov/pubmed/31783835
http://dx.doi.org/10.1186/s12906-019-2754-7
_version_ 1783474407763607552
author Borah, Anuj Kumar
Singh, Archana
Yasmin, Rafika
Doley, Robin
Mattaparthi, Venkata Satish Kumar
Saha, Sougata
author_facet Borah, Anuj Kumar
Singh, Archana
Yasmin, Rafika
Doley, Robin
Mattaparthi, Venkata Satish Kumar
Saha, Sougata
author_sort Borah, Anuj Kumar
collection PubMed
description BACKGROUND: To investigate the potential of Catharanthus roseus leaf aqueous crude extract (CRACE) as a regulator of adipocyte development and function. METHODS: 3T3-L1 adipogenesis model was used to investigate the effect of CRACE on adipogenesis. 3T3-L1 preadipocytes (for adipogenic differentiation) and mature 3T3-L1 adipocytes (for adipocyte function) were treated with non-toxic doses of CRACE. The outcomes were corroborated by intracellular lipid accumulation, expression of pro-and anti-adipogenic effector molecules. To investigate CRACE mediated lipolysis, cAMP accumulation, glycerol release and phosphorylation of key effector molecules were tested in treated mature adipocytes. Finally, the extract was fractionated to identify the active molecule/s in the extract. RESULTS: CRACE significantly reduced adipocyte differentiation by modulating PPARγ expression. At early stage CRACE directly targeted Lipin1 expression and consequently impacted KLF7, subsequently expression of GATA2, CEBPα, SREBP1c were targeted, with PPARγ expression, particularly curtailed. While CRACE significantly reduced several lipogenic genes like FAS and GPD1 in mature adipocytes, concomitantly, it greatly increased lipolysis resulting in decreased lipid accumulation in mature adipocytes. The increase in lipolysis was due to decreased Akt activation, increased cAMP level, and PKA activity. The fractionation of CRACE allowed identification of two fractions with potent anti-adipogenic activity. Both the fractions contained 1α, 25-dihydroxy Vitamin D3 as major component. CONCLUSIONS: 1α, 25-dihydroxy Vitamin D3 containing CRACE can be developed into an effective anti-obesity formulation that decreases adipogenesis and increases lipid catabolism.
format Online
Article
Text
id pubmed-6883588
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68835882019-12-03 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells Borah, Anuj Kumar Singh, Archana Yasmin, Rafika Doley, Robin Mattaparthi, Venkata Satish Kumar Saha, Sougata BMC Complement Altern Med Research Article BACKGROUND: To investigate the potential of Catharanthus roseus leaf aqueous crude extract (CRACE) as a regulator of adipocyte development and function. METHODS: 3T3-L1 adipogenesis model was used to investigate the effect of CRACE on adipogenesis. 3T3-L1 preadipocytes (for adipogenic differentiation) and mature 3T3-L1 adipocytes (for adipocyte function) were treated with non-toxic doses of CRACE. The outcomes were corroborated by intracellular lipid accumulation, expression of pro-and anti-adipogenic effector molecules. To investigate CRACE mediated lipolysis, cAMP accumulation, glycerol release and phosphorylation of key effector molecules were tested in treated mature adipocytes. Finally, the extract was fractionated to identify the active molecule/s in the extract. RESULTS: CRACE significantly reduced adipocyte differentiation by modulating PPARγ expression. At early stage CRACE directly targeted Lipin1 expression and consequently impacted KLF7, subsequently expression of GATA2, CEBPα, SREBP1c were targeted, with PPARγ expression, particularly curtailed. While CRACE significantly reduced several lipogenic genes like FAS and GPD1 in mature adipocytes, concomitantly, it greatly increased lipolysis resulting in decreased lipid accumulation in mature adipocytes. The increase in lipolysis was due to decreased Akt activation, increased cAMP level, and PKA activity. The fractionation of CRACE allowed identification of two fractions with potent anti-adipogenic activity. Both the fractions contained 1α, 25-dihydroxy Vitamin D3 as major component. CONCLUSIONS: 1α, 25-dihydroxy Vitamin D3 containing CRACE can be developed into an effective anti-obesity formulation that decreases adipogenesis and increases lipid catabolism. BioMed Central 2019-11-29 /pmc/articles/PMC6883588/ /pubmed/31783835 http://dx.doi.org/10.1186/s12906-019-2754-7 Text en © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Borah, Anuj Kumar
Singh, Archana
Yasmin, Rafika
Doley, Robin
Mattaparthi, Venkata Satish Kumar
Saha, Sougata
1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title_full 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title_fullStr 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title_full_unstemmed 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title_short 1α, 25-dihydroxy Vitamin D3 containing fractions of Catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3T3-L1 cells
title_sort 1α, 25-dihydroxy vitamin d3 containing fractions of catharanthus roseus leaf aqueous extract inhibit preadipocyte differentiation and induce lipolysis in 3t3-l1 cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883588/
https://www.ncbi.nlm.nih.gov/pubmed/31783835
http://dx.doi.org/10.1186/s12906-019-2754-7
work_keys_str_mv AT borahanujkumar 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells
AT singharchana 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells
AT yasminrafika 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells
AT doleyrobin 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells
AT mattaparthivenkatasatishkumar 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells
AT sahasougata 1a25dihydroxyvitamind3containingfractionsofcatharanthusroseusleafaqueousextractinhibitpreadipocytedifferentiationandinducelipolysisin3t3l1cells