Cargando…
LC-MSMS based screening of emerging pollutant degradation by different peroxidases
BACKGROUND: The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Us...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883607/ https://www.ncbi.nlm.nih.gov/pubmed/31779627 http://dx.doi.org/10.1186/s12896-019-0574-y |
_version_ | 1783474412268290048 |
---|---|
author | Almaqdi, Khadega A. Morsi, Rana Alhayuti, Bahia Alharthi, Farah Ashraf, S. Salman |
author_facet | Almaqdi, Khadega A. Morsi, Rana Alhayuti, Bahia Alharthi, Farah Ashraf, S. Salman |
author_sort | Almaqdi, Khadega A. |
collection | PubMed |
description | BACKGROUND: The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Use of peroxidases has recently been recognized as a novel remediation approach that may have potential advantages over conventional degradation techniques. However, testing the abilities of different peroxidases to degrade diverse emerging pollutants is tedious and cumbersome. RESULTS: In the present study, we present a rapid and robust approach to easily test the degradability of 21 different emerging pollutants by five different peroxidases (soybean peroxidase, chloroperoxidase, lactoperoxidase, manganese peroxidase, and horseradish peroxidase) using an LC-MSMS approach. Furthermore, this approach was also used to examine the role of a redox mediator in these enzymatic degradation assays. Our results show that some of the organic pollutants can be easily degraded by all five of the peroxidases tested, whereas others are only degraded by a specific peroxidase (or when a redox mediator was present) and there are some that are completely resistant to degradation by any of the peroxidases tested (even in the presence of a redox mediator). The degradation of furosemide and trimethoprim by soybean peroxidase and chloroperoxidase, respectively, was investigated in detail by examining the transformation products generated during their degradation. Some of the products generated during enzymatic breakdown of these pollutants have been previously reported by others, however, we report many new transformation products. CONCLUSIONS: LC-MSMS approaches, like the one described here, can be used to rapidly evaluate the potential of different peroxidases (and redox requirements) to be used as bioremediation agents. Our preliminary result shows peroxidases hold tremendous potential for being used in a final wastewater treatment step. |
format | Online Article Text |
id | pubmed-6883607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68836072019-12-03 LC-MSMS based screening of emerging pollutant degradation by different peroxidases Almaqdi, Khadega A. Morsi, Rana Alhayuti, Bahia Alharthi, Farah Ashraf, S. Salman BMC Biotechnol Research Article BACKGROUND: The presence of a wide range of bioactive organic pollutants in wastewater and municipal water sources is raising concerns about their potential effects on humans. Not surprisingly, various approaches are being explored that can efficiently degrade these persistent organic pollutants. Use of peroxidases has recently been recognized as a novel remediation approach that may have potential advantages over conventional degradation techniques. However, testing the abilities of different peroxidases to degrade diverse emerging pollutants is tedious and cumbersome. RESULTS: In the present study, we present a rapid and robust approach to easily test the degradability of 21 different emerging pollutants by five different peroxidases (soybean peroxidase, chloroperoxidase, lactoperoxidase, manganese peroxidase, and horseradish peroxidase) using an LC-MSMS approach. Furthermore, this approach was also used to examine the role of a redox mediator in these enzymatic degradation assays. Our results show that some of the organic pollutants can be easily degraded by all five of the peroxidases tested, whereas others are only degraded by a specific peroxidase (or when a redox mediator was present) and there are some that are completely resistant to degradation by any of the peroxidases tested (even in the presence of a redox mediator). The degradation of furosemide and trimethoprim by soybean peroxidase and chloroperoxidase, respectively, was investigated in detail by examining the transformation products generated during their degradation. Some of the products generated during enzymatic breakdown of these pollutants have been previously reported by others, however, we report many new transformation products. CONCLUSIONS: LC-MSMS approaches, like the one described here, can be used to rapidly evaluate the potential of different peroxidases (and redox requirements) to be used as bioremediation agents. Our preliminary result shows peroxidases hold tremendous potential for being used in a final wastewater treatment step. BioMed Central 2019-11-28 /pmc/articles/PMC6883607/ /pubmed/31779627 http://dx.doi.org/10.1186/s12896-019-0574-y Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Almaqdi, Khadega A. Morsi, Rana Alhayuti, Bahia Alharthi, Farah Ashraf, S. Salman LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title | LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title_full | LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title_fullStr | LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title_full_unstemmed | LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title_short | LC-MSMS based screening of emerging pollutant degradation by different peroxidases |
title_sort | lc-msms based screening of emerging pollutant degradation by different peroxidases |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883607/ https://www.ncbi.nlm.nih.gov/pubmed/31779627 http://dx.doi.org/10.1186/s12896-019-0574-y |
work_keys_str_mv | AT almaqdikhadegaa lcmsmsbasedscreeningofemergingpollutantdegradationbydifferentperoxidases AT morsirana lcmsmsbasedscreeningofemergingpollutantdegradationbydifferentperoxidases AT alhayutibahia lcmsmsbasedscreeningofemergingpollutantdegradationbydifferentperoxidases AT alharthifarah lcmsmsbasedscreeningofemergingpollutantdegradationbydifferentperoxidases AT ashrafssalman lcmsmsbasedscreeningofemergingpollutantdegradationbydifferentperoxidases |