Cargando…

Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery

BACKGROUND: The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increas...

Descripción completa

Detalles Bibliográficos
Autores principales: Taylor, Molly A., Hughes, Adina M., Walton, Josephine, Coenen-Stass, Anna M. L., Magiera, Lukasz, Mooney, Lorraine, Bell, Sigourney, Staniszewska, Anna D., Sandin, Linda C., Barry, Simon T., Watkins, Amanda, Carnevalli, Larissa S., Hardaker, Elizabeth L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883640/
https://www.ncbi.nlm.nih.gov/pubmed/31779705
http://dx.doi.org/10.1186/s40425-019-0794-7
_version_ 1783474419862077440
author Taylor, Molly A.
Hughes, Adina M.
Walton, Josephine
Coenen-Stass, Anna M. L.
Magiera, Lukasz
Mooney, Lorraine
Bell, Sigourney
Staniszewska, Anna D.
Sandin, Linda C.
Barry, Simon T.
Watkins, Amanda
Carnevalli, Larissa S.
Hardaker, Elizabeth L.
author_facet Taylor, Molly A.
Hughes, Adina M.
Walton, Josephine
Coenen-Stass, Anna M. L.
Magiera, Lukasz
Mooney, Lorraine
Bell, Sigourney
Staniszewska, Anna D.
Sandin, Linda C.
Barry, Simon T.
Watkins, Amanda
Carnevalli, Larissa S.
Hardaker, Elizabeth L.
author_sort Taylor, Molly A.
collection PubMed
description BACKGROUND: The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. METHODS: Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. RESULTS: This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. CONCLUSIONS: Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations.
format Online
Article
Text
id pubmed-6883640
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68836402019-12-03 Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery Taylor, Molly A. Hughes, Adina M. Walton, Josephine Coenen-Stass, Anna M. L. Magiera, Lukasz Mooney, Lorraine Bell, Sigourney Staniszewska, Anna D. Sandin, Linda C. Barry, Simon T. Watkins, Amanda Carnevalli, Larissa S. Hardaker, Elizabeth L. J Immunother Cancer Research Article BACKGROUND: The ability to modulate immune-inhibitory pathways using checkpoint blockade antibodies such as αPD-1, αPD-L1, and αCTLA-4 represents a significant breakthrough in cancer therapy in recent years. This has driven interest in identifying small-molecule-immunotherapy combinations to increase the proportion of responses. Murine syngeneic models, which have a functional immune system, represent an essential tool for pre-clinical evaluation of new immunotherapies. However, immune response varies widely between models and the translational relevance of each model is not fully understood, making selection of an appropriate pre-clinical model for drug target validation challenging. METHODS: Using flow cytometry, O-link protein analysis, RT-PCR, and RNAseq we have characterized kinetic changes in immune-cell populations over the course of tumor development in commonly used syngeneic models. RESULTS: This longitudinal profiling of syngeneic models enables pharmacodynamic time point selection within each model, dependent on the immune population of interest. Additionally, we have characterized the changes in immune populations in each of these models after treatment with the combination of α-PD-L1 and α-CTLA-4 antibodies, enabling benchmarking to known immune modulating treatments within each model. CONCLUSIONS: Taken together, this dataset will provide a framework for characterization and enable the selection of the optimal models for immunotherapy combinations and generate potential biomarkers for clinical evaluation in identifying responders and non-responders to immunotherapy combinations. BioMed Central 2019-11-28 /pmc/articles/PMC6883640/ /pubmed/31779705 http://dx.doi.org/10.1186/s40425-019-0794-7 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Taylor, Molly A.
Hughes, Adina M.
Walton, Josephine
Coenen-Stass, Anna M. L.
Magiera, Lukasz
Mooney, Lorraine
Bell, Sigourney
Staniszewska, Anna D.
Sandin, Linda C.
Barry, Simon T.
Watkins, Amanda
Carnevalli, Larissa S.
Hardaker, Elizabeth L.
Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title_full Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title_fullStr Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title_full_unstemmed Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title_short Longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
title_sort longitudinal immune characterization of syngeneic tumor models to enable model selection for immune oncology drug discovery
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883640/
https://www.ncbi.nlm.nih.gov/pubmed/31779705
http://dx.doi.org/10.1186/s40425-019-0794-7
work_keys_str_mv AT taylormollya longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT hughesadinam longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT waltonjosephine longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT coenenstassannaml longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT magieralukasz longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT mooneylorraine longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT bellsigourney longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT staniszewskaannad longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT sandinlindac longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT barrysimont longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT watkinsamanda longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT carnevallilarissas longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery
AT hardakerelizabethl longitudinalimmunecharacterizationofsyngeneictumormodelstoenablemodelselectionforimmuneoncologydrugdiscovery