Cargando…
RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883696/ https://www.ncbi.nlm.nih.gov/pubmed/31779641 http://dx.doi.org/10.1186/s13059-019-1847-4 |
_version_ | 1783474436191551488 |
---|---|
author | Lin, Hai Hargreaves, Katherine A. Li, Rudong Reiter, Jill L. Wang, Yue Mort, Matthew Cooper, David N. Zhou, Yaoqi Zhang, Chi Eadon, Michael T. Dolan, M. Eileen Ipe, Joseph Skaar, Todd C. Liu, Yunlong |
author_facet | Lin, Hai Hargreaves, Katherine A. Li, Rudong Reiter, Jill L. Wang, Yue Mort, Matthew Cooper, David N. Zhou, Yaoqi Zhang, Chi Eadon, Michael T. Dolan, M. Eileen Ipe, Joseph Skaar, Todd C. Liu, Yunlong |
author_sort | Lin, Hai |
collection | PubMed |
description | Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis. |
format | Online Article Text |
id | pubmed-6883696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68836962019-12-03 RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants Lin, Hai Hargreaves, Katherine A. Li, Rudong Reiter, Jill L. Wang, Yue Mort, Matthew Cooper, David N. Zhou, Yaoqi Zhang, Chi Eadon, Michael T. Dolan, M. Eileen Ipe, Joseph Skaar, Todd C. Liu, Yunlong Genome Biol Method Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis. BioMed Central 2019-11-28 /pmc/articles/PMC6883696/ /pubmed/31779641 http://dx.doi.org/10.1186/s13059-019-1847-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Method Lin, Hai Hargreaves, Katherine A. Li, Rudong Reiter, Jill L. Wang, Yue Mort, Matthew Cooper, David N. Zhou, Yaoqi Zhang, Chi Eadon, Michael T. Dolan, M. Eileen Ipe, Joseph Skaar, Todd C. Liu, Yunlong RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title | RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title_full | RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title_fullStr | RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title_full_unstemmed | RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title_short | RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
title_sort | regsnps-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883696/ https://www.ncbi.nlm.nih.gov/pubmed/31779641 http://dx.doi.org/10.1186/s13059-019-1847-4 |
work_keys_str_mv | AT linhai regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT hargreaveskatherinea regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT lirudong regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT reiterjilll regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT wangyue regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT mortmatthew regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT cooperdavidn regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT zhouyaoqi regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT zhangchi regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT eadonmichaelt regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT dolanmeileen regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT ipejoseph regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT skaartoddc regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants AT liuyunlong regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants |