Cargando…

RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants

Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Hai, Hargreaves, Katherine A., Li, Rudong, Reiter, Jill L., Wang, Yue, Mort, Matthew, Cooper, David N., Zhou, Yaoqi, Zhang, Chi, Eadon, Michael T., Dolan, M. Eileen, Ipe, Joseph, Skaar, Todd C., Liu, Yunlong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883696/
https://www.ncbi.nlm.nih.gov/pubmed/31779641
http://dx.doi.org/10.1186/s13059-019-1847-4
_version_ 1783474436191551488
author Lin, Hai
Hargreaves, Katherine A.
Li, Rudong
Reiter, Jill L.
Wang, Yue
Mort, Matthew
Cooper, David N.
Zhou, Yaoqi
Zhang, Chi
Eadon, Michael T.
Dolan, M. Eileen
Ipe, Joseph
Skaar, Todd C.
Liu, Yunlong
author_facet Lin, Hai
Hargreaves, Katherine A.
Li, Rudong
Reiter, Jill L.
Wang, Yue
Mort, Matthew
Cooper, David N.
Zhou, Yaoqi
Zhang, Chi
Eadon, Michael T.
Dolan, M. Eileen
Ipe, Joseph
Skaar, Todd C.
Liu, Yunlong
author_sort Lin, Hai
collection PubMed
description Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis.
format Online
Article
Text
id pubmed-6883696
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68836962019-12-03 RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants Lin, Hai Hargreaves, Katherine A. Li, Rudong Reiter, Jill L. Wang, Yue Mort, Matthew Cooper, David N. Zhou, Yaoqi Zhang, Chi Eadon, Michael T. Dolan, M. Eileen Ipe, Joseph Skaar, Todd C. Liu, Yunlong Genome Biol Method Single nucleotide variants (SNVs) in intronic regions have yet to be systematically investigated for their disease-causing potential. Using known pathogenic and neutral intronic SNVs (iSNVs) as training data, we develop the RegSNPs-intron algorithm based on a random forest classifier that integrates RNA splicing, protein structure, and evolutionary conservation features. RegSNPs-intron showed excellent performance in evaluating the pathogenic impacts of iSNVs. Using a high-throughput functional reporter assay called ASSET-seq (ASsay for Splicing using ExonTrap and sequencing), we evaluate the impact of RegSNPs-intron predictions on splicing outcome. Together, RegSNPs-intron and ASSET-seq enable effective prioritization of iSNVs for disease pathogenesis. BioMed Central 2019-11-28 /pmc/articles/PMC6883696/ /pubmed/31779641 http://dx.doi.org/10.1186/s13059-019-1847-4 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Lin, Hai
Hargreaves, Katherine A.
Li, Rudong
Reiter, Jill L.
Wang, Yue
Mort, Matthew
Cooper, David N.
Zhou, Yaoqi
Zhang, Chi
Eadon, Michael T.
Dolan, M. Eileen
Ipe, Joseph
Skaar, Todd C.
Liu, Yunlong
RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title_full RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title_fullStr RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title_full_unstemmed RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title_short RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
title_sort regsnps-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883696/
https://www.ncbi.nlm.nih.gov/pubmed/31779641
http://dx.doi.org/10.1186/s13059-019-1847-4
work_keys_str_mv AT linhai regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT hargreaveskatherinea regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT lirudong regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT reiterjilll regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT wangyue regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT mortmatthew regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT cooperdavidn regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT zhouyaoqi regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT zhangchi regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT eadonmichaelt regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT dolanmeileen regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT ipejoseph regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT skaartoddc regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants
AT liuyunlong regsnpsintronacomputationalframeworkforpredictingpathogenicimpactofintronicsinglenucleotidevariants