Cargando…
Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s
The Arctic has warmed significantly since the early 1980s and much of this warming can be attributed to the surface albedo feedback. In this study, satellite observations reveal a 1.25 to 1.51% per decade absolute reduction in the Arctic mean surface albedo in spring and summer during 1982 to 2014....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883849/ https://www.ncbi.nlm.nih.gov/pubmed/31712425 http://dx.doi.org/10.1073/pnas.1915258116 |
_version_ | 1783474455244177408 |
---|---|
author | Zhang, Rudong Wang, Hailong Fu, Qiang Rasch, Philip J. Wang, Xuanji |
author_facet | Zhang, Rudong Wang, Hailong Fu, Qiang Rasch, Philip J. Wang, Xuanji |
author_sort | Zhang, Rudong |
collection | PubMed |
description | The Arctic has warmed significantly since the early 1980s and much of this warming can be attributed to the surface albedo feedback. In this study, satellite observations reveal a 1.25 to 1.51% per decade absolute reduction in the Arctic mean surface albedo in spring and summer during 1982 to 2014. Results from a global model and reanalysis data are used to unravel the causes of this albedo reduction. We find that reductions of terrestrial snow cover, snow cover fraction over sea ice, and sea ice extent appear to contribute equally to the Arctic albedo decline. We show that the decrease in snow cover fraction is primarily driven by the increase in surface air temperature, followed by declining snowfall. Although the total precipitation has increased as the Arctic warms, Arctic snowfall is reduced substantially in all analyzed data sets. Light-absorbing soot in snow has been decreasing in past decades over the Arctic, indicating that soot heating has not been the driver of changes in the Arctic snow cover, ice cover, and surface albedo since the 1980s. |
format | Online Article Text |
id | pubmed-6883849 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-68838492019-12-04 Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s Zhang, Rudong Wang, Hailong Fu, Qiang Rasch, Philip J. Wang, Xuanji Proc Natl Acad Sci U S A Physical Sciences The Arctic has warmed significantly since the early 1980s and much of this warming can be attributed to the surface albedo feedback. In this study, satellite observations reveal a 1.25 to 1.51% per decade absolute reduction in the Arctic mean surface albedo in spring and summer during 1982 to 2014. Results from a global model and reanalysis data are used to unravel the causes of this albedo reduction. We find that reductions of terrestrial snow cover, snow cover fraction over sea ice, and sea ice extent appear to contribute equally to the Arctic albedo decline. We show that the decrease in snow cover fraction is primarily driven by the increase in surface air temperature, followed by declining snowfall. Although the total precipitation has increased as the Arctic warms, Arctic snowfall is reduced substantially in all analyzed data sets. Light-absorbing soot in snow has been decreasing in past decades over the Arctic, indicating that soot heating has not been the driver of changes in the Arctic snow cover, ice cover, and surface albedo since the 1980s. National Academy of Sciences 2019-11-26 2019-11-11 /pmc/articles/PMC6883849/ /pubmed/31712425 http://dx.doi.org/10.1073/pnas.1915258116 Text en Copyright © 2019 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Zhang, Rudong Wang, Hailong Fu, Qiang Rasch, Philip J. Wang, Xuanji Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title | Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title_full | Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title_fullStr | Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title_full_unstemmed | Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title_short | Unraveling driving forces explaining significant reduction in satellite-inferred Arctic surface albedo since the 1980s |
title_sort | unraveling driving forces explaining significant reduction in satellite-inferred arctic surface albedo since the 1980s |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883849/ https://www.ncbi.nlm.nih.gov/pubmed/31712425 http://dx.doi.org/10.1073/pnas.1915258116 |
work_keys_str_mv | AT zhangrudong unravelingdrivingforcesexplainingsignificantreductioninsatelliteinferredarcticsurfacealbedosincethe1980s AT wanghailong unravelingdrivingforcesexplainingsignificantreductioninsatelliteinferredarcticsurfacealbedosincethe1980s AT fuqiang unravelingdrivingforcesexplainingsignificantreductioninsatelliteinferredarcticsurfacealbedosincethe1980s AT raschphilipj unravelingdrivingforcesexplainingsignificantreductioninsatelliteinferredarcticsurfacealbedosincethe1980s AT wangxuanji unravelingdrivingforcesexplainingsignificantreductioninsatelliteinferredarcticsurfacealbedosincethe1980s |