Cargando…
A Model Falsification Approach to Learning in Non-Stationary Environments for Experimental Design
The application of data driven machine learning and advanced statistical tools to complex physics experiments, such as Magnetic Confinement Nuclear Fusion, can be problematic, due the varying conditions of the systems to be studied. In particular, new experiments have to be planned in unexplored reg...
Autores principales: | Murari, Andrea, Lungaroni, Michele, Peluso, Emmanuele, Craciunescu, Teddy, Gelfusa, Michela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884580/ https://www.ncbi.nlm.nih.gov/pubmed/31784604 http://dx.doi.org/10.1038/s41598-019-54145-7 |
Ejemplares similares
-
On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals
por: Murari, Andrea, et al.
Publicado: (2018) -
Improving Entropy Estimates of Complex Network Topology for the Characterization of Coupling in Dynamical Systems
por: Craciunescu, Teddy, et al.
Publicado: (2018) -
Causality Detection Methods Applied to the Investigation of Malaria Epidemics
por: Craciunescu, Teddy, et al.
Publicado: (2019) -
Quantifying Total Influence between Variables with Information Theoretic and Machine Learning Techniques
por: Murari, Andrea, et al.
Publicado: (2020) -
Image-Based Methods to Investigate Synchronization between Time Series Relevant for Plasma Fusion Diagnostics
por: Craciunescu, Teddy, et al.
Publicado: (2020)