Cargando…

Production of monodisperse polyurea microcapsules using microfluidics

Methods to make microcapsules – used in a broad range of healthcare and energy applications – currently suffer from poor size control, limiting the establishment of size/property relationships. Here, we use microfluidics to produce monodisperse polyurea microcapsules (PUMC) with a limonene core. Usi...

Descripción completa

Detalles Bibliográficos
Autores principales: Thorne, Michael F., Simkovic, Felix, Slater, Anna G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884639/
https://www.ncbi.nlm.nih.gov/pubmed/31784621
http://dx.doi.org/10.1038/s41598-019-54512-4
Descripción
Sumario:Methods to make microcapsules – used in a broad range of healthcare and energy applications – currently suffer from poor size control, limiting the establishment of size/property relationships. Here, we use microfluidics to produce monodisperse polyurea microcapsules (PUMC) with a limonene core. Using varied flow rates and a commercial glass chip, we produce capsules with mean diameters of 27, 30, 32, 34, and 35 µm, achieving narrow capsule size distributions of ±2 µm for each size. We describe an automated method of sizing droplets as they are produced using video recording and custom Python code. The sustainable generation of such size-controlled PUMCs, potential replacements for commercial encapsulated systems, will allow new insights into the effect of particle size on performance.