Cargando…

Benchmarking an 11-qubit quantum computer

The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, K., Beck, K. M., Debnath, S., Amini, J. M., Nam, Y., Grzesiak, N., Chen, J.-S., Pisenti, N. C., Chmielewski, M., Collins, C., Hudek, K. M., Mizrahi, J., Wong-Campos, J. D., Allen, S., Apisdorf, J., Solomon, P., Williams, M., Ducore, A. M., Blinov, A., Kreikemeier, S. M., Chaplin, V., Keesan, M., Monroe, C., Kim, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884641/
https://www.ncbi.nlm.nih.gov/pubmed/31784527
http://dx.doi.org/10.1038/s41467-019-13534-2
_version_ 1783474593746386944
author Wright, K.
Beck, K. M.
Debnath, S.
Amini, J. M.
Nam, Y.
Grzesiak, N.
Chen, J.-S.
Pisenti, N. C.
Chmielewski, M.
Collins, C.
Hudek, K. M.
Mizrahi, J.
Wong-Campos, J. D.
Allen, S.
Apisdorf, J.
Solomon, P.
Williams, M.
Ducore, A. M.
Blinov, A.
Kreikemeier, S. M.
Chaplin, V.
Keesan, M.
Monroe, C.
Kim, J.
author_facet Wright, K.
Beck, K. M.
Debnath, S.
Amini, J. M.
Nam, Y.
Grzesiak, N.
Chen, J.-S.
Pisenti, N. C.
Chmielewski, M.
Collins, C.
Hudek, K. M.
Mizrahi, J.
Wong-Campos, J. D.
Allen, S.
Apisdorf, J.
Solomon, P.
Williams, M.
Ducore, A. M.
Blinov, A.
Kreikemeier, S. M.
Chaplin, V.
Keesan, M.
Monroe, C.
Kim, J.
author_sort Wright, K.
collection PubMed
description The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 (171)Yb(+) ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text] , average two-qubit-gate fidelities of 97.5[Formula: see text] , and SPAM errors of 0.7[Formula: see text] . To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text] , respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware.
format Online
Article
Text
id pubmed-6884641
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68846412019-12-03 Benchmarking an 11-qubit quantum computer Wright, K. Beck, K. M. Debnath, S. Amini, J. M. Nam, Y. Grzesiak, N. Chen, J.-S. Pisenti, N. C. Chmielewski, M. Collins, C. Hudek, K. M. Mizrahi, J. Wong-Campos, J. D. Allen, S. Apisdorf, J. Solomon, P. Williams, M. Ducore, A. M. Blinov, A. Kreikemeier, S. M. Chaplin, V. Keesan, M. Monroe, C. Kim, J. Nat Commun Article The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 (171)Yb(+) ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text] , average two-qubit-gate fidelities of 97.5[Formula: see text] , and SPAM errors of 0.7[Formula: see text] . To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text] , respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware. Nature Publishing Group UK 2019-11-29 /pmc/articles/PMC6884641/ /pubmed/31784527 http://dx.doi.org/10.1038/s41467-019-13534-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wright, K.
Beck, K. M.
Debnath, S.
Amini, J. M.
Nam, Y.
Grzesiak, N.
Chen, J.-S.
Pisenti, N. C.
Chmielewski, M.
Collins, C.
Hudek, K. M.
Mizrahi, J.
Wong-Campos, J. D.
Allen, S.
Apisdorf, J.
Solomon, P.
Williams, M.
Ducore, A. M.
Blinov, A.
Kreikemeier, S. M.
Chaplin, V.
Keesan, M.
Monroe, C.
Kim, J.
Benchmarking an 11-qubit quantum computer
title Benchmarking an 11-qubit quantum computer
title_full Benchmarking an 11-qubit quantum computer
title_fullStr Benchmarking an 11-qubit quantum computer
title_full_unstemmed Benchmarking an 11-qubit quantum computer
title_short Benchmarking an 11-qubit quantum computer
title_sort benchmarking an 11-qubit quantum computer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884641/
https://www.ncbi.nlm.nih.gov/pubmed/31784527
http://dx.doi.org/10.1038/s41467-019-13534-2
work_keys_str_mv AT wrightk benchmarkingan11qubitquantumcomputer
AT beckkm benchmarkingan11qubitquantumcomputer
AT debnaths benchmarkingan11qubitquantumcomputer
AT aminijm benchmarkingan11qubitquantumcomputer
AT namy benchmarkingan11qubitquantumcomputer
AT grzesiakn benchmarkingan11qubitquantumcomputer
AT chenjs benchmarkingan11qubitquantumcomputer
AT pisentinc benchmarkingan11qubitquantumcomputer
AT chmielewskim benchmarkingan11qubitquantumcomputer
AT collinsc benchmarkingan11qubitquantumcomputer
AT hudekkm benchmarkingan11qubitquantumcomputer
AT mizrahij benchmarkingan11qubitquantumcomputer
AT wongcamposjd benchmarkingan11qubitquantumcomputer
AT allens benchmarkingan11qubitquantumcomputer
AT apisdorfj benchmarkingan11qubitquantumcomputer
AT solomonp benchmarkingan11qubitquantumcomputer
AT williamsm benchmarkingan11qubitquantumcomputer
AT ducoream benchmarkingan11qubitquantumcomputer
AT blinova benchmarkingan11qubitquantumcomputer
AT kreikemeiersm benchmarkingan11qubitquantumcomputer
AT chaplinv benchmarkingan11qubitquantumcomputer
AT keesanm benchmarkingan11qubitquantumcomputer
AT monroec benchmarkingan11qubitquantumcomputer
AT kimj benchmarkingan11qubitquantumcomputer