Cargando…
Benchmarking an 11-qubit quantum computer
The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884641/ https://www.ncbi.nlm.nih.gov/pubmed/31784527 http://dx.doi.org/10.1038/s41467-019-13534-2 |
_version_ | 1783474593746386944 |
---|---|
author | Wright, K. Beck, K. M. Debnath, S. Amini, J. M. Nam, Y. Grzesiak, N. Chen, J.-S. Pisenti, N. C. Chmielewski, M. Collins, C. Hudek, K. M. Mizrahi, J. Wong-Campos, J. D. Allen, S. Apisdorf, J. Solomon, P. Williams, M. Ducore, A. M. Blinov, A. Kreikemeier, S. M. Chaplin, V. Keesan, M. Monroe, C. Kim, J. |
author_facet | Wright, K. Beck, K. M. Debnath, S. Amini, J. M. Nam, Y. Grzesiak, N. Chen, J.-S. Pisenti, N. C. Chmielewski, M. Collins, C. Hudek, K. M. Mizrahi, J. Wong-Campos, J. D. Allen, S. Apisdorf, J. Solomon, P. Williams, M. Ducore, A. M. Blinov, A. Kreikemeier, S. M. Chaplin, V. Keesan, M. Monroe, C. Kim, J. |
author_sort | Wright, K. |
collection | PubMed |
description | The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 (171)Yb(+) ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text] , average two-qubit-gate fidelities of 97.5[Formula: see text] , and SPAM errors of 0.7[Formula: see text] . To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text] , respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware. |
format | Online Article Text |
id | pubmed-6884641 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68846412019-12-03 Benchmarking an 11-qubit quantum computer Wright, K. Beck, K. M. Debnath, S. Amini, J. M. Nam, Y. Grzesiak, N. Chen, J.-S. Pisenti, N. C. Chmielewski, M. Collins, C. Hudek, K. M. Mizrahi, J. Wong-Campos, J. D. Allen, S. Apisdorf, J. Solomon, P. Williams, M. Ducore, A. M. Blinov, A. Kreikemeier, S. M. Chaplin, V. Keesan, M. Monroe, C. Kim, J. Nat Commun Article The field of quantum computing has grown from concept to demonstration devices over the past 20 years. Universal quantum computing offers efficiency in approaching problems of scientific and commercial interest, such as factoring large numbers, searching databases, simulating intractable models from quantum physics, and optimizing complex cost functions. Here, we present an 11-qubit fully-connected, programmable quantum computer in a trapped ion system composed of 13 (171)Yb(+) ions. We demonstrate average single-qubit gate fidelities of 99.5[Formula: see text] , average two-qubit-gate fidelities of 97.5[Formula: see text] , and SPAM errors of 0.7[Formula: see text] . To illustrate the capabilities of this universal platform and provide a basis for comparison with similarly-sized devices, we compile the Bernstein-Vazirani and Hidden Shift algorithms into our native gates and execute them on the hardware with average success rates of 78[Formula: see text] and 35[Formula: see text] , respectively. These algorithms serve as excellent benchmarks for any type of quantum hardware, and show that our system outperforms all other currently available hardware. Nature Publishing Group UK 2019-11-29 /pmc/articles/PMC6884641/ /pubmed/31784527 http://dx.doi.org/10.1038/s41467-019-13534-2 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Wright, K. Beck, K. M. Debnath, S. Amini, J. M. Nam, Y. Grzesiak, N. Chen, J.-S. Pisenti, N. C. Chmielewski, M. Collins, C. Hudek, K. M. Mizrahi, J. Wong-Campos, J. D. Allen, S. Apisdorf, J. Solomon, P. Williams, M. Ducore, A. M. Blinov, A. Kreikemeier, S. M. Chaplin, V. Keesan, M. Monroe, C. Kim, J. Benchmarking an 11-qubit quantum computer |
title | Benchmarking an 11-qubit quantum computer |
title_full | Benchmarking an 11-qubit quantum computer |
title_fullStr | Benchmarking an 11-qubit quantum computer |
title_full_unstemmed | Benchmarking an 11-qubit quantum computer |
title_short | Benchmarking an 11-qubit quantum computer |
title_sort | benchmarking an 11-qubit quantum computer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6884641/ https://www.ncbi.nlm.nih.gov/pubmed/31784527 http://dx.doi.org/10.1038/s41467-019-13534-2 |
work_keys_str_mv | AT wrightk benchmarkingan11qubitquantumcomputer AT beckkm benchmarkingan11qubitquantumcomputer AT debnaths benchmarkingan11qubitquantumcomputer AT aminijm benchmarkingan11qubitquantumcomputer AT namy benchmarkingan11qubitquantumcomputer AT grzesiakn benchmarkingan11qubitquantumcomputer AT chenjs benchmarkingan11qubitquantumcomputer AT pisentinc benchmarkingan11qubitquantumcomputer AT chmielewskim benchmarkingan11qubitquantumcomputer AT collinsc benchmarkingan11qubitquantumcomputer AT hudekkm benchmarkingan11qubitquantumcomputer AT mizrahij benchmarkingan11qubitquantumcomputer AT wongcamposjd benchmarkingan11qubitquantumcomputer AT allens benchmarkingan11qubitquantumcomputer AT apisdorfj benchmarkingan11qubitquantumcomputer AT solomonp benchmarkingan11qubitquantumcomputer AT williamsm benchmarkingan11qubitquantumcomputer AT ducoream benchmarkingan11qubitquantumcomputer AT blinova benchmarkingan11qubitquantumcomputer AT kreikemeiersm benchmarkingan11qubitquantumcomputer AT chaplinv benchmarkingan11qubitquantumcomputer AT keesanm benchmarkingan11qubitquantumcomputer AT monroec benchmarkingan11qubitquantumcomputer AT kimj benchmarkingan11qubitquantumcomputer |