Cargando…
A Long Short-Term Memory Ensemble Approach for Improving the Outcome Prediction in Intensive Care Unit
In intensive care unit (ICU), it is essential to predict the mortality of patients and mathematical models aid in improving the prognosis accuracy. Recently, recurrent neural network (RNN), especially long short-term memory (LSTM) network, showed advantages in sequential modeling and was promising f...
Autores principales: | Xia, Jing, Pan, Su, Zhu, Min, Cai, Guolong, Yan, Molei, Su, Qun, Yan, Jing, Ning, Gangmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885179/ https://www.ncbi.nlm.nih.gov/pubmed/31827589 http://dx.doi.org/10.1155/2019/8152713 |
Ejemplares similares
-
Dimensionality Reduction in Complex Medical Data: Improved Self-Adaptive Niche Genetic Algorithm
por: Zhu, Min, et al.
Publicado: (2015) -
Development of Novel Fractal Method for Characterizing the Distribution of Blood Flow in Multi-Scale Vascular Tree
por: Li, Peilun, et al.
Publicado: (2021) -
IoT and Ensemble Long-Short-Term-Memory-Based Evapotranspiration Forecasting for Riyadh
por: Nauman, Muhammad Asif, et al.
Publicado: (2023) -
Preprocessing Unevenly Sampled RR Interval Signals to Enhance Estimation of Heart Rate Deceleration and Acceleration Capacities in Discriminating Chronic Heart Failure Patients from Healthy Controls
por: Cao, Ping, et al.
Publicado: (2020) -
Ensemble streamflow forecasting based on variational mode decomposition and long short term memory
por: Sun, Xiaomei, et al.
Publicado: (2022)