Cargando…

Dnmt3a-Mediated DNA Methylation Changes Regulate Osteogenic Differentiation of hMSCs Cultivated in the 3D Scaffolds under Oxidative Stress

Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and re...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Liangping, Ling, Zemin, Dong, Wenwu, Chen, Xiaoying, Vater, Corina, Liao, Hongxing, Qi, Qihua, Hu, Hao, Chen, Yan, Gelinsky, Michael, Stiehler, Maik, Zou, Xuenong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885223/
https://www.ncbi.nlm.nih.gov/pubmed/31827676
http://dx.doi.org/10.1155/2019/4824209
Descripción
Sumario:Oxidative stress (OS) caused by multiple factors occurs after the implantation of bone repair materials. DNA methylation plays an important role in the regulation of osteogenic differentiation. Moreover, recent studies suggest that DNA methyltransferases (Dnmts) are involved in bone formation and resorption. However, the effect and mechanism of DNA methylation changes induced by OS on bone formation after implantation still remain unknown. Three-dimensional (3D) cell culture systems are much closer to the real situation than traditional monolayer cell culture systems in mimicking the in vivo microenvironment. We have developed porous 3D scaffolds composed of mineralized collagen type I, which mimics the composition of the extracellular matrix of human bone. Here, we first established a 3D culture model of human mesenchymal stem cells (hMSCs) seeded in the biomimetic scaffolds using 160 μM H(2)O(2) to simulate the microenvironment of osteogenesis after implantation. Our results showed that decreased methylation levels of ALP and RUNX2 were induced by H(2)O(2) treatment in hMSCs cultivated in the 3D scaffolds. Furthermore, we found that Dnmt3a was significantly downregulated in a porcine anterior lumbar interbody fusion model and was confirmed to be reduced by H(2)O(2) treatment using the 3D in vitro model. The hypomethylation of ALP and RUNX2 induced by H(2)O(2) treatment was abolished by Dnmt3a overexpression. Moreover, our findings demonstrated that the Dnmt inhibitor 5-AZA can enhance osteogenic differentiation of hMSCs under OS, evidenced by the increased expression of ALP and RUNX2 accompanied by the decreased DNA methylation of ALP and RUNX2. Taken together, these results suggest that Dnmt3a-mediated DNA methylation changes regulate osteogenic differentiation and 5-AZA can enhance osteogenic differentiation via the hypomethylation of ALP and RUNX2 under OS. The biomimetic 3D scaffolds combined with 5-AZA and antioxidants may serve as a promising novel strategy to improve osteogenesis after implantation.