Cargando…
A Wrapper Feature Subset Selection Method Based on Randomized Search and Multilayer Structure
The identification of discriminative features from information-rich data with the goal of clinical diagnosis is crucial in the field of biomedical science. In this context, many machine-learning techniques have been widely applied and achieved remarkable results. However, disease, especially cancer,...
Autores principales: | Mao, Yifei, Yang, Yuansheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885241/ https://www.ncbi.nlm.nih.gov/pubmed/31828154 http://dx.doi.org/10.1155/2019/9864213 |
Ejemplares similares
-
An improved wrapper-based feature selection method for machinery fault diagnosis
por: Hui, Kar Hoou, et al.
Publicado: (2017) -
Artificial Intelligence based wrapper for high dimensional feature selection
por: Jain, Rahi, et al.
Publicado: (2023) -
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters
por: Wang, Chunlin, et al.
Publicado: (2004) -
Ranking of characteristic features in combined wrapper approaches to selection
por: Stańczyk, Urszula
Publicado: (2014) -
Drug–target interaction prediction based on protein features, using wrapper feature selection
por: Abbasi Mesrabadi, Hengame, et al.
Publicado: (2023)