Cargando…
Comparison of Bagging and Boosting Ensemble Machine Learning Methods for Automated EMG Signal Classification
The neuromuscular disorders are diagnosed using electromyographic (EMG) signals. Machine learning algorithms are employed as a decision support system to diagnose neuromuscular disorders. This paper compares bagging and boosting ensemble learning methods to classify EMG signals automatically. Even t...
Autores principales: | Yaman, Emine, Subasi, Abdulhamit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885261/ https://www.ncbi.nlm.nih.gov/pubmed/31828145 http://dx.doi.org/10.1155/2019/9152506 |
Ejemplares similares
-
The Ensemble Machine Learning-Based Classification of Motor Imagery Tasks in Brain-Computer Interface
por: Subasi, Abdulhamit, et al.
Publicado: (2021) -
Practical guide for biomedical signals analysis using machine learning techniques: a MATLAB based approach
por: Subasi, Abdulhamit
Publicado: (2019) -
Practical machine learning for data analysis using Python
por: Subasi, Abdulhamit
Publicado: (2020) -
Ensemble Learning for AI Developers: Learn Bagging, Stacking, and Boosting Methods with Use Cases
por: Kumar, Alok
Publicado: (2020) -
Ensemble-based bag of features for automated classification of normal and COVID-19 CXR images
por: Ashour, Amira S., et al.
Publicado: (2021)