Cargando…
Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway
Cholestatic liver injury, due to obstruction of the biliary tract or genetic defects, is often accompanied by progressive inflammation and liver fibrosis. Methane-rich saline (MRS) has anti-inflammatory properties. However, whether MRS can provide protective effect in cholestatic liver injury is sti...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885841/ https://www.ncbi.nlm.nih.gov/pubmed/31827690 http://dx.doi.org/10.1155/2019/6565283 |
_version_ | 1783474802018746368 |
---|---|
author | Li, Zeyu Chen, Dongdong Jia, Yifan Feng, Yang Wang, Cong Tong, Yingmu Cui, Ruixia Qu, Kai Liu, Chang Zhang, Jingyao |
author_facet | Li, Zeyu Chen, Dongdong Jia, Yifan Feng, Yang Wang, Cong Tong, Yingmu Cui, Ruixia Qu, Kai Liu, Chang Zhang, Jingyao |
author_sort | Li, Zeyu |
collection | PubMed |
description | Cholestatic liver injury, due to obstruction of the biliary tract or genetic defects, is often accompanied by progressive inflammation and liver fibrosis. Methane-rich saline (MRS) has anti-inflammatory properties. However, whether MRS can provide protective effect in cholestatic liver injury is still unclear. In this study, Sprague-Dawley rats received bile duct ligation (BDL) to generate a cholestatic model followed by MRS treatment (10 mL/kg, ip treatment) every 12 h after the operation to explore the potential protective mechanism of MRS in cholestatic liver injury. We found that MRS effectively improved liver function, alleviated liver pathological damage, and localized infiltration of inflammatory cells. MRS treatment decreased the expression of hepatic fibrosis-associated proteins to alleviate liver fibrosis. Furthermore, MRS treatment suppressed the TLR4/NF-κB pathway and further reduced the levels of proinflammatory factors. Downregulation of NF-κB subsequently reduced the NLRP3 expression to inhibit pyroptosis. Our data indicated that methane treatment prevented cholestatic liver injury via anti-inflammatory properties that involved the TLR4/NF-κB/NLRP3 signaling pathway. |
format | Online Article Text |
id | pubmed-6885841 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-68858412019-12-11 Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway Li, Zeyu Chen, Dongdong Jia, Yifan Feng, Yang Wang, Cong Tong, Yingmu Cui, Ruixia Qu, Kai Liu, Chang Zhang, Jingyao Oxid Med Cell Longev Research Article Cholestatic liver injury, due to obstruction of the biliary tract or genetic defects, is often accompanied by progressive inflammation and liver fibrosis. Methane-rich saline (MRS) has anti-inflammatory properties. However, whether MRS can provide protective effect in cholestatic liver injury is still unclear. In this study, Sprague-Dawley rats received bile duct ligation (BDL) to generate a cholestatic model followed by MRS treatment (10 mL/kg, ip treatment) every 12 h after the operation to explore the potential protective mechanism of MRS in cholestatic liver injury. We found that MRS effectively improved liver function, alleviated liver pathological damage, and localized infiltration of inflammatory cells. MRS treatment decreased the expression of hepatic fibrosis-associated proteins to alleviate liver fibrosis. Furthermore, MRS treatment suppressed the TLR4/NF-κB pathway and further reduced the levels of proinflammatory factors. Downregulation of NF-κB subsequently reduced the NLRP3 expression to inhibit pyroptosis. Our data indicated that methane treatment prevented cholestatic liver injury via anti-inflammatory properties that involved the TLR4/NF-κB/NLRP3 signaling pathway. Hindawi 2019-11-18 /pmc/articles/PMC6885841/ /pubmed/31827690 http://dx.doi.org/10.1155/2019/6565283 Text en Copyright © 2019 Zeyu Li et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Li, Zeyu Chen, Dongdong Jia, Yifan Feng, Yang Wang, Cong Tong, Yingmu Cui, Ruixia Qu, Kai Liu, Chang Zhang, Jingyao Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title | Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title_full | Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title_fullStr | Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title_full_unstemmed | Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title_short | Methane-Rich Saline Counteracts Cholestasis-Induced Liver Damage via Regulating the TLR4/NF-κB/NLRP3 Inflammasome Pathway |
title_sort | methane-rich saline counteracts cholestasis-induced liver damage via regulating the tlr4/nf-κb/nlrp3 inflammasome pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6885841/ https://www.ncbi.nlm.nih.gov/pubmed/31827690 http://dx.doi.org/10.1155/2019/6565283 |
work_keys_str_mv | AT lizeyu methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT chendongdong methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT jiayifan methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT fengyang methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT wangcong methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT tongyingmu methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT cuiruixia methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT qukai methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT liuchang methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway AT zhangjingyao methanerichsalinecounteractscholestasisinducedliverdamageviaregulatingthetlr4nfkbnlrp3inflammasomepathway |