Cargando…
Biomedical word sense disambiguation with bidirectional long short-term memory and attention-based neural networks
BACKGROUND: In recent years, deep learning methods have been applied to many natural language processing tasks to achieve state-of-the-art performance. However, in the biomedical domain, they have not out-performed supervised word sense disambiguation (WSD) methods based on support vector machines o...
Autores principales: | Zhang, Canlin, Biś, Daniel, Liu, Xiuwen, He, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886160/ https://www.ncbi.nlm.nih.gov/pubmed/31787096 http://dx.doi.org/10.1186/s12859-019-3079-8 |
Ejemplares similares
-
A Learning-Based Approach for Biomedical Word Sense Disambiguation
por: Al-Mubaid, Hisham, et al.
Publicado: (2012) -
Knowledge-based biomedical word sense disambiguation: comparison of approaches
por: Jimeno-Yepes, Antonio J, et al.
Publicado: (2010) -
Biomedical word sense disambiguation with ontologies and metadata: automation meets accuracy
por: Alexopoulou, Dimitra, et al.
Publicado: (2009) -
Machine learning and word sense disambiguation in the biomedical domain: design and evaluation issues
por: Xu, Hua, et al.
Publicado: (2006) -
Fast max-margin clustering for unsupervised word sense disambiguation in biomedical texts
por: Duan, Weisi, et al.
Publicado: (2009)