Cargando…
A hybrid self-attention deep learning framework for multivariate sleep stage classification
BACKGROUND: Sleep is a complex and dynamic biological process characterized by different sleep patterns. Comprehensive sleep monitoring and analysis using multivariate polysomnography (PSG) records has achieved significant efforts to prevent sleep-related disorders. To alleviate the time consumption...
Autores principales: | Yuan, Ye, Jia, Kebin, Ma, Fenglong, Xun, Guangxu, Wang, Yaqing, Su, Lu, Zhang, Aidong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886163/ https://www.ncbi.nlm.nih.gov/pubmed/31787093 http://dx.doi.org/10.1186/s12859-019-3075-z |
Ejemplares similares
-
A multi-context learning approach for EEG epileptic seizure detection
por: Yuan, Ye, et al.
Publicado: (2018) -
Sleep Stage Classification in Children Using Self-Attention and Gaussian Noise Data Augmentation
por: Huang, Xinyu, et al.
Publicado: (2023) -
A Deep Transfer Learning Framework for Sleep Stage Classification with Single-Channel EEG Signals
por: ElMoaqet, Hisham, et al.
Publicado: (2022) -
Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
Publicado: (2018) -
FusionAtt: Deep Fusional Attention Networks for Multi-Channel Biomedical Signals
por: Yuan, Ye, et al.
Publicado: (2019)