Cargando…
Predicting virus-host association by Kernelized logistic matrix factorization and similarity network fusion
BACKGROUND: Viruses are closely related to bacteria and human diseases. It is of great significance to predict associations between viruses and hosts for understanding the dynamics and complex functional networks in microbial community. With the rapid development of the metagenomics sequencing, some...
Autores principales: | Liu, Dan, Ma, Yingjun, Jiang, Xingpeng, He, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886165/ https://www.ncbi.nlm.nih.gov/pubmed/31787095 http://dx.doi.org/10.1186/s12859-019-3082-0 |
Ejemplares similares
-
MiRNA-disease interaction prediction based on kernel neighborhood similarity and multi-network bidirectional propagation
por: Ma, Yingjun, et al.
Publicado: (2019) -
Projection-Based Neighborhood Non-Negative Matrix Factorization for lncRNA-Protein Interaction Prediction
por: Ma, Yingjun, et al.
Publicado: (2019) -
VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization
por: Bolgár, Bence, et al.
Publicado: (2017) -
An Inductive Logistic Matrix Factorization Model for Predicting Drug-Metabolite Association With Vicus Regularization
por: Ma, Yuanyuan, et al.
Publicado: (2021) -
SKF-LDA: Similarity Kernel Fusion for Predicting lncRNA-Disease Association
por: Xie, Guobo, et al.
Publicado: (2019)