Cargando…
DeepEP: a deep learning framework for identifying essential proteins
BACKGROUND: Essential proteins are crucial for cellular life and thus, identification of essential proteins is an important topic and a challenging problem for researchers. Recently lots of computational approaches have been proposed to handle this problem. However, traditional centrality methods ca...
Autores principales: | Zeng, Min, Li, Min, Wu, Fang-Xiang, Li, Yaohang, Pan, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886168/ https://www.ncbi.nlm.nih.gov/pubmed/31787076 http://dx.doi.org/10.1186/s12859-019-3076-y |
Ejemplares similares
-
DeepFrag-k: a fragment-based deep learning approach for protein fold recognition
por: Elhefnawy, Wessam, et al.
Publicado: (2020) -
DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning
por: Li, Yiming, et al.
Publicado: (2022) -
A deep learning framework for identifying essential proteins based on multiple biological information
por: Yue, Yi, et al.
Publicado: (2022) -
Identifying the serious clinical outcomes of adverse reactions to drugs by a multi-task deep learning framework
por: Zhao, Haochen, et al.
Publicado: (2023) -
MSDRP: a deep learning model based on multisource data for predicting drug response
por: Zhao, Haochen, et al.
Publicado: (2023)