Cargando…
A supervised term ranking model for diversity enhanced biomedical information retrieval
BACKGROUND: The number of biomedical research articles have increased exponentially with the advancement of biomedicine in recent years. These articles have thus brought a great difficulty in obtaining the needed information of researchers. Information retrieval technologies seek to tackle the probl...
Autores principales: | Xu, Bo, Lin, Hongfei, Yang, Liang, Xu, Kan, Zhang, Yijia, Zhang, Dongyu, Yang, Zhihao, Wang, Jian, Lin, Yuan, Yin, Fuliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886246/ https://www.ncbi.nlm.nih.gov/pubmed/31787087 http://dx.doi.org/10.1186/s12859-019-3080-2 |
Ejemplares similares
-
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
Supervised Learning Based Hypothesis Generation from Biomedical Literature
por: Sang, Shengtian, et al.
Publicado: (2015) -
Improving biomedical information retrieval by linear combinations of different query expansion techniques
por: Abdulla, Ahmed AbdoAziz Ahmed, et al.
Publicado: (2016) -
Learning to rank diversified results for biomedical information retrieval from multiple features
por: Wu, Jiajin, et al.
Publicado: (2014)