Cargando…

NGF protects neuroblastoma cells against β‐amyloid‐induced apoptosis via the Nrf2/HO‐1 pathway

As one of the main neurotrophic factors, nerve growth factor (NGF) participates in various processes related to viability, plasticity, and neuronal growth. NGF is known to protect against cell death and toxicity triggered by β‐amyloid (Aβ), but the underlying mechanism remains unclear. Here, we inve...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Rui, Su, Wei, Jiao, Qian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886293/
https://www.ncbi.nlm.nih.gov/pubmed/31605506
http://dx.doi.org/10.1002/2211-5463.12742
Descripción
Sumario:As one of the main neurotrophic factors, nerve growth factor (NGF) participates in various processes related to viability, plasticity, and neuronal growth. NGF is known to protect against cell death and toxicity triggered by β‐amyloid (Aβ), but the underlying mechanism remains unclear. Here, we investigated this process in SKNSH neuroblastoma, in which NGF reduced cell death induced by Aβ25–35. Furthermore, NGF suppressed the production of reactive oxygen species (ROS) and promoted antioxidant function via Aβ25–35. Additionally, we demonstrated that NGF impaired the activation of the JNK/c‐Jun signaling pathway and significantly increased Nrf2 nuclear translocation and HO‐1 expression. Nrf2 elimination abolished the protective effect of NGF‐1 on Aβ25–35‐induced ROS generation, apoptosis, and activation of the JNK/c‐Jun pathway. The results of our study indicate that NGF protects neuroblastoma against injury triggered by Aβ25–35 via suppression of ROS–JNK/c‐Jun pathway stimulation through the Nrf2/HO‐1 pathway.