Cargando…
Development of Predictive Models for Identifying Potential S100A9 Inhibitors Based on Machine Learning Methods
S100A9 is a potential therapeutic target for various disease including prostate cancer, colorectal cancer, and Alzheimer's disease. However, the sparsity of atomic level data, such as protein-protein interaction of S100A9 with RAGE, TLR4/MD2, or CD147 (EMMPRIN) hinders the rational drug design...
Autores principales: | Lee, Jihyeun, Kumar, Surendra, Lee, Sang-Yoon, Park, Sung Jean, Kim, Mi-hyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886474/ https://www.ncbi.nlm.nih.gov/pubmed/31824919 http://dx.doi.org/10.3389/fchem.2019.00779 |
Ejemplares similares
-
Discovery of TIGIT inhibitors based on DEL and machine learning
por: Xiong, Feng, et al.
Publicado: (2022) -
Ligand-based pharmacophore modeling and molecular dynamic simulation approaches to identify putative MMP-9 inhibitors
por: Sanapalli, Bharat Kumar Reddy, et al.
Publicado: (2021) -
Statistical Thermal Studies of 5.02 TeV Pb-Pb Collisions
por: Bang, Jihyeun
Publicado: (2017) -
Machine learning-guided evaluation of extraction and simulation methods for cancer patient-specific metabolic models
por: Lee, Sang Mi, et al.
Publicado: (2022) -
Coronary artery decision algorithm trained by two-step machine learning algorithm
por: Kim, Young Woo, et al.
Publicado: (2020)