Cargando…
Whose data can we trust: How meta-predictions can be used to uncover credible respondents in survey data
Many areas of economics use subjective data, although it had been known to present problems regarding its reliability. To improve data quality, researchers may use scoring rules that reward respondents so that it is most profitable for them to tell the truth. However, if the subjects are not well in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6886803/ https://www.ncbi.nlm.nih.gov/pubmed/31790433 http://dx.doi.org/10.1371/journal.pone.0225432 |
Sumario: | Many areas of economics use subjective data, although it had been known to present problems regarding its reliability. To improve data quality, researchers may use scoring rules that reward respondents so that it is most profitable for them to tell the truth. However, if the subjects are not well informed about the topic or if they do not pay sufficient attention, they will produce data that could not be dependably used for decision-making even though subjects gave their honest answer. In this paper we show how meta-predictions (respondents’ predictions about choices of others) can be used for identification of respondents who produce dependable data. We use purchase intention survey, a popular method to elicit early adoption forecasts for a new concept, as a test bed for our approach. We present results from three online experiments, demonstrating that corrected purchase intentions are closer to the real outcomes. |
---|