Cargando…
Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films
Thermal conductivity is required for developing high-power microwave technology. Diamond has the highest thermal conductivity in nature. In this study, a diamond film was synthesized by microwave plasma chemical deposition, and then long and short conductive graphite fibers were introduced to the di...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888003/ https://www.ncbi.nlm.nih.gov/pubmed/31717582 http://dx.doi.org/10.3390/ma12223700 |
_version_ | 1783475132234203136 |
---|---|
author | Ding, Minghui Liu, Yanqing Lu, Xinru Tang, Weizhong |
author_facet | Ding, Minghui Liu, Yanqing Lu, Xinru Tang, Weizhong |
author_sort | Ding, Minghui |
collection | PubMed |
description | Thermal conductivity is required for developing high-power microwave technology. Diamond has the highest thermal conductivity in nature. In this study, a diamond film was synthesized by microwave plasma chemical deposition, and then long and short conductive graphite fibers were introduced to the diamond films by laser ablation. The permittivity of the samples in the K-band was measured using the transmission/reflection method. The permittivity of diamond films with short graphite fibers increased. The increase in real part of permittivity can be attributed to electron polarization, and the increase in the imaginary part can be ascribed to both polarization and electrical conductivity. The diamond films with long graphite fibers exhibited a highly pronounced anisotropy for microwave. The calculation of microwave absorption shows that reflection loss values exceeding −10 dB can be obtained in the frequency range of 21.3–23.5 GHz when the graphite fiber length is 0.7 mm and the sample thickness is 2.5 mm. Therefore, diamond films can be developed into a microwave attenuation material with extremely high thermal conductivity. |
format | Online Article Text |
id | pubmed-6888003 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68880032019-12-09 Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films Ding, Minghui Liu, Yanqing Lu, Xinru Tang, Weizhong Materials (Basel) Article Thermal conductivity is required for developing high-power microwave technology. Diamond has the highest thermal conductivity in nature. In this study, a diamond film was synthesized by microwave plasma chemical deposition, and then long and short conductive graphite fibers were introduced to the diamond films by laser ablation. The permittivity of the samples in the K-band was measured using the transmission/reflection method. The permittivity of diamond films with short graphite fibers increased. The increase in real part of permittivity can be attributed to electron polarization, and the increase in the imaginary part can be ascribed to both polarization and electrical conductivity. The diamond films with long graphite fibers exhibited a highly pronounced anisotropy for microwave. The calculation of microwave absorption shows that reflection loss values exceeding −10 dB can be obtained in the frequency range of 21.3–23.5 GHz when the graphite fiber length is 0.7 mm and the sample thickness is 2.5 mm. Therefore, diamond films can be developed into a microwave attenuation material with extremely high thermal conductivity. MDPI 2019-11-09 /pmc/articles/PMC6888003/ /pubmed/31717582 http://dx.doi.org/10.3390/ma12223700 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ding, Minghui Liu, Yanqing Lu, Xinru Tang, Weizhong Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title_full | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title_fullStr | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title_full_unstemmed | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title_short | Effect of Laser Ablation on Microwave Attenuation Properties of Diamond Films |
title_sort | effect of laser ablation on microwave attenuation properties of diamond films |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888003/ https://www.ncbi.nlm.nih.gov/pubmed/31717582 http://dx.doi.org/10.3390/ma12223700 |
work_keys_str_mv | AT dingminghui effectoflaserablationonmicrowaveattenuationpropertiesofdiamondfilms AT liuyanqing effectoflaserablationonmicrowaveattenuationpropertiesofdiamondfilms AT luxinru effectoflaserablationonmicrowaveattenuationpropertiesofdiamondfilms AT tangweizhong effectoflaserablationonmicrowaveattenuationpropertiesofdiamondfilms |