Cargando…
Prediction of Cyclic Stress–Strain Property of Steels by Crystal Plasticity Simulations and Machine Learning
In this study, a method for the prediction of cyclic stress–strain properties of ferrite-pearlite steels was proposed. At first, synthetic microstructures were generated based on an anisotropic tessellation from the results of electron backscatter diffraction (EBSD) analyses. Low-cycle fatigue exper...
Autores principales: | Miyazawa, Yuto, Briffod, Fabien, Shiraiwa, Takayuki, Enoki, Manabu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888044/ https://www.ncbi.nlm.nih.gov/pubmed/31703355 http://dx.doi.org/10.3390/ma12223668 |
Ejemplares similares
-
Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation
por: Shiraiwa, Takayuki, et al.
Publicado: (2023) -
Modelling Cyclic Behaviour of Martensitic Steel with J2 Plasticity and Crystal Plasticity
por: Sajjad, Hafiz Muhammad, et al.
Publicado: (2019) -
Machine learning plastic deformation of crystals
por: Salmenjoki, Henri, et al.
Publicado: (2018) -
Strain Range Dependent Cyclic Hardening of 08Ch18N10T Stainless Steel—Experiments and Simulations
por: Fumfera, Jaromír, et al.
Publicado: (2019) -
Effect of Shear Strain Rate on Microstructure and Properties of Austenitic Steel Processed by Cyclic Forward/Reverse Torsion
por: Zhang, Zhimin, et al.
Publicado: (2019)