Cargando…
Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas
The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The prope...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888060/ https://www.ncbi.nlm.nih.gov/pubmed/31752263 http://dx.doi.org/10.3390/ma12223792 |
_version_ | 1783475142751420416 |
---|---|
author | Grams, Jacek Ryczkowski, Robert Chałupka, Karolina Sobczak, Izabela Rzeźnicka, Izabela Przybysz, Kamila |
author_facet | Grams, Jacek Ryczkowski, Robert Chałupka, Karolina Sobczak, Izabela Rzeźnicka, Izabela Przybysz, Kamila |
author_sort | Grams, Jacek |
collection | PubMed |
description | The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The properties of three materials (ZSM-5, ZrO(2), and MCF (mesostructured cellular foam)) used as a support differing in surface acidity, surface area, pore structure, ability to interact with an active phase, and resistance to coking, have been studied. The results revealed that Ni/MCF, characterized by large pore size and pore volume, low acidity, small NiO crystallites size, and moderate interaction with the active phase, is the most efficient among studied catalysts, while an application of Ni on ZSM-5 support with high-acidity was not beneficial. The results suggest that structure of the support, in particular larger pore size and a better contact between an active phase and reaction intermediates, play an important role in the formation of gaseous products during thermal decomposition of lignocellulosic feedstock. On the other hand, high acidity of the support did not increase the formation of large amounts of hydrogen-rich gaseous products. |
format | Online Article Text |
id | pubmed-6888060 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68880602019-12-09 Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas Grams, Jacek Ryczkowski, Robert Chałupka, Karolina Sobczak, Izabela Rzeźnicka, Izabela Przybysz, Kamila Materials (Basel) Article The main objective of this work was to evaluate an impact of a support on the efficiency of nickel catalysts in the high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas. The most important parameters influencing catalytic performance of the catalysts were identified. The properties of three materials (ZSM-5, ZrO(2), and MCF (mesostructured cellular foam)) used as a support differing in surface acidity, surface area, pore structure, ability to interact with an active phase, and resistance to coking, have been studied. The results revealed that Ni/MCF, characterized by large pore size and pore volume, low acidity, small NiO crystallites size, and moderate interaction with the active phase, is the most efficient among studied catalysts, while an application of Ni on ZSM-5 support with high-acidity was not beneficial. The results suggest that structure of the support, in particular larger pore size and a better contact between an active phase and reaction intermediates, play an important role in the formation of gaseous products during thermal decomposition of lignocellulosic feedstock. On the other hand, high acidity of the support did not increase the formation of large amounts of hydrogen-rich gaseous products. MDPI 2019-11-19 /pmc/articles/PMC6888060/ /pubmed/31752263 http://dx.doi.org/10.3390/ma12223792 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grams, Jacek Ryczkowski, Robert Chałupka, Karolina Sobczak, Izabela Rzeźnicka, Izabela Przybysz, Kamila Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title | Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title_full | Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title_fullStr | Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title_full_unstemmed | Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title_short | Impact of Support (MCF, ZrO(2), ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas |
title_sort | impact of support (mcf, zro(2), zsm-5) on the efficiency of ni catalyst in high-temperature conversion of lignocellulosic biomass to hydrogen-rich gas |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888060/ https://www.ncbi.nlm.nih.gov/pubmed/31752263 http://dx.doi.org/10.3390/ma12223792 |
work_keys_str_mv | AT gramsjacek impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas AT ryczkowskirobert impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas AT chałupkakarolina impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas AT sobczakizabela impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas AT rzeznickaizabela impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas AT przybyszkamila impactofsupportmcfzro2zsm5ontheefficiencyofnicatalystinhightemperatureconversionoflignocellulosicbiomasstohydrogenrichgas |