Cargando…
A Data-Driven Measure of Effective Connectivity Based on Renyi's α-Entropy
Transfer entropy (TE) is a model-free effective connectivity measure based on information theory. It has been increasingly used in neuroscience because of its ability to detect unknown non-linear interactions, which makes it well suited for exploratory brain effective connectivity analyses. Like all...
Autores principales: | De La Pava Panche, Ivan, Alvarez-Meza, Andres M., Orozco-Gutierrez, Alvaro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888095/ https://www.ncbi.nlm.nih.gov/pubmed/31849588 http://dx.doi.org/10.3389/fnins.2019.01277 |
Ejemplares similares
-
Renyi entropy driven hierarchical graph clustering
por: Oggier, Frédérique, et al.
Publicado: (2021) -
Conditional Rényi Entropy and the Relationships between Rényi Capacities
por: Aishwarya, Gautam, et al.
Publicado: (2020) -
Rényi Entropy and Rényi Divergence in Product MV-Algebras
por: Markechová, Dagmar, et al.
Publicado: (2018) -
On Rényi Permutation Entropy
por: Gutjahr, Tim, et al.
Publicado: (2021) -
Rényi Entropy, Signed Probabilities, and the Qubit
por: Brandenburger, Adam, et al.
Publicado: (2022)