Cargando…

Investigation of Microenvironmental Exposures to Particle-Bound Polycyclic Aromatic Hydrocarbons for Elementary School Children

Polycyclic aromatic hydrocarbons (PAHs) are formed when organic matters incompletely combust and get distributed into the air in the form of vapor or the particular phase of absorption or condensation on the surface of respirable particles. Certain PAHs are considered as carcinogenic and mutagenic,...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Chin-Sheng, Lung, Shih-Chun Candice, Chang, Ta-Yuan, Tu, Han-Hsiang, Chang, Li-Te
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888137/
https://www.ncbi.nlm.nih.gov/pubmed/31717657
http://dx.doi.org/10.3390/ijerph16224390
Descripción
Sumario:Polycyclic aromatic hydrocarbons (PAHs) are formed when organic matters incompletely combust and get distributed into the air in the form of vapor or the particular phase of absorption or condensation on the surface of respirable particles. Certain PAHs are considered as carcinogenic and mutagenic, and are primarily associated with the particulate phase. Therefore, the characterization of exposure to particle-bound PAHs (p-PAHs) is critical to assessing the health risks in our daily life. A panel study was conducted during the years 2004 and 2005 to assess microenvironmental exposures to p-PAHs for elementary school children living in Taipei metropolitan area. During the study, integrated filter samples were collected by a dust monitor (model 1.108, Grimm) for 17 p-PAH species analysis using gas chromatography with mass spectrometry (GC/MS). The sampling durations were five days. Overall, 52 samples for children’s microenvironmental exposures were included in the data analysis. Results showed that geometric mean (GM) levels (and geometric standard deviation) of p-PAH exposures were 4.443 (3.395) ng/m(3) for children. The top three highest proportions of p-PAH components were indeno[1,2,3-cd]pyrene (IND) (21.7%), benzo[g,h,i]perylene (BghiP) (18.5%), and dibenz[a,h]anthracene (DBA) (9.1%), all of which are 5- or 6-ring p-PAHs. In addition, results from diagnostic ratios and principal component analysis (PCA) found that traffic pollution, incense burning, and cooking emission were the major p-PAH exposure sources for children. The total benzo[a]pyrene equivalent (BaPeq) concentration was 1.07 ± 0.80 ng/m(3) (mean ± standard deviation), with a GM of 0.84 ng/m(3). The GM value of the inhalation carcinogenic risk was 7.31 × 10(−5) with the range of 2.23 × 10(−5) to 3.11 × 10(−4), which was higher than the U.S. Environmental Protection Administration guideline limit of 10(−6). DBA accounted for 45.1% of the excess cancer risk, followed by benzo[a]pyrene (BaP) (33.5%) and IND (10.7%). In conclusion, the current study demonstrated that inhalational cancer risk due to the p-PAH exposures for children is not negligible, and more efficient technical and management policies should be adopted to reduce the PAH pollutant sources.