Cargando…

Analysis of Toxic Metals in Liquid from Electronic Cigarettes

As the technology of electronic nicotine delivery systems (ENDS), including e-cigarettes, evolves, assessing metal concentrations in liquids among brands over time becomes challenging. A method for quantification of chromium, nickel, copper, zinc, cadmium, tin, and lead in ENDS liquids using triple...

Descripción completa

Detalles Bibliográficos
Autores principales: Gray, Naudia, Halstead, Mary, Gonzalez-Jimenez, Nathalie, Valentin-Blasini, Liza, Watson, Clifford, Pappas, R. Steven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888324/
https://www.ncbi.nlm.nih.gov/pubmed/31766137
http://dx.doi.org/10.3390/ijerph16224450
Descripción
Sumario:As the technology of electronic nicotine delivery systems (ENDS), including e-cigarettes, evolves, assessing metal concentrations in liquids among brands over time becomes challenging. A method for quantification of chromium, nickel, copper, zinc, cadmium, tin, and lead in ENDS liquids using triple quadrupole inductively coupled plasma mass spectrometry was developed. The method’s limits of detection (LODs) were 0.031, 0.032, 3.15, 1.27, 0.108, 0.099, 0.066 µg/g for Cr, Ni, Cu, Zn, Cd, Sn, and Pb respectively. Liquids analyzed were from different brands and flavors of refill bottles or single-use, rechargeable, and pod devices from different years. Scanning electron microscopy with energy dispersive spectroscopy further evaluated the device components’ compositions. Refill liquids before contacting a device were below lowest reportable levels (LRL) for all metals. Copper and zinc were elevated in liquids from devices containing brass. Cadmium was <LRL in all liquids and was not observed in device components. Cr, Ni, Cu, Zn, Sn, and Pb, reported in µg/g, ranged from <LRL to 0.396, 4.04, 903, 454, 0.898, and 13.5 respectively. Elevated metal concentrations in the liquid were also elevated in aerosol from the corresponding device. The data demonstrates the impact of device design and materials on toxic metals in ENDS liquid.