Cargando…

Simultaneous Health Risk Assessment of Potentially Toxic Elements in Soils and Sediments of the Guishui River Basin, Beijing

Simultaneous ecological and health risk assessments of potentially toxic elements in soils and sediments can provide substantial information on their environmental influence at the river-basin scale. Herein, soil and sediment samples were collected from the Guishui River basin to evaluate the pollut...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Jiankang, Gao, Bo, Yin, Shuhua, Xu, Dongyu, Liu, Laisheng, Li, Yanyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888392/
https://www.ncbi.nlm.nih.gov/pubmed/31744075
http://dx.doi.org/10.3390/ijerph16224539
Descripción
Sumario:Simultaneous ecological and health risk assessments of potentially toxic elements in soils and sediments can provide substantial information on their environmental influence at the river-basin scale. Herein, soil and sediment samples were collected from the Guishui River basin to evaluate the pollution situation and the ecological and health risk of potentially toxic elements. Various indexes were utilized for quantitatively assessing their health risks. Pollution assessment by geo-accumulation index showed that Cd had “uncontaminated to moderately polluted” status in the soils and sediments. Potential ecological risk index showed that the Guishui River basin was at low risk in general, but Cd was classified as “moderate or considerable ecological risk” both in the soils and sediments. Health risk assessment calculated human exposure from soils and indicated that both non-carcinogenic and carcinogenic risks of the selected potentially toxic elements were lower than the acceptable levels. Health risks posed by potentially toxic elements bio-accumulated in fish, stemming from sediment resuspension, were also assessed. Non-carcinogenic hazard index indicated no adverse health effects on humans via exposure to sediments; however, in general, Cr contributed largely to health risks among the selected potentially toxic elements. Therefore, special attention needs to be paid to the Guishui River basin in the future.