Cargando…

The Effect of Schisandra chinensis Baillon on Cross-Talk between Oxidative Stress, Endoplasmic Reticulum Stress, and Mitochondrial Signaling Pathway in Testes of Varicocele-Induced SD Rat

Schisandra chinensis Baillon (SC) has been utilized for its antioxidants and anti-inflammatory activities in a broad variety of medical applications. However; SC uses for improving fertility in males and related disorders with proper scientific validation remain obscure. The present study aimed to i...

Descripción completa

Detalles Bibliográficos
Autores principales: Karna, Keshab Kumar, Choi, Bo Ram, Kim, Min-Ji, Kim, Hye Kyung, Park, Jong Kwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888522/
https://www.ncbi.nlm.nih.gov/pubmed/31744253
http://dx.doi.org/10.3390/ijms20225785
Descripción
Sumario:Schisandra chinensis Baillon (SC) has been utilized for its antioxidants and anti-inflammatory activities in a broad variety of medical applications. However; SC uses for improving fertility in males and related disorders with proper scientific validation remain obscure. The present study aimed to investigate the effects of SC on varicocele (VC)-induced testicular dysfunction and the potential molecular mechanism associated with VC-induced germ cell apoptosis. The male Sprague–Dawley rats were equally divided into four groups consisting of 10 rats in a normal control group (CTR), a control group administered SC 200 mg/kg (SC 200), a varicocele-induced control group (VC), and a varicocele-induced group administered SC 200 mg/kg (VC + SC 200). Rats were administrated 200 mg/kg SC once daily for 28 days after induction of varicocele rats and sham controls. At the end of the treatment period, body and reproductive organ weight, sperm parameters, histopathological damages, proinflammatory cytokines, apoptosis markers, biomarkers of oxidative stress, endoplasmic reticulum (ER) stress, and steroidogenic acute regulatory protein (StAR) were evaluated. The effects of SC extract on human sperm motility were also analyzed. SC treatment reduces VC-induced testicular dysfunction by significantly increasing testicular weight, sperm count and sperm motility, serum testosterone level, Johnsen score, spermatogenic cell density, testicular superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase level, and steroidogenic acute regulatory protein (StAR) level. Furthermore, the effects of SC on malondialdehyde (MDA) level, reactive oxygen species (ROS)/reactive nitrogen species (RNS) level, apoptotic index, serum luteinizing hormone (LH) and follicle stimulating hormone (FSH) levels, Glucose-regulated protein-78 (Grp 78), phosphorylated c-Jun-N-terminal kinase (p-JNK), phosphorylated inositol-requiring transmembrane kinase/endoribonuclease 1α (p-IRE1α), cleaved caspase 3, and Bax:Bcl2 in VC-induced rats were significantly decreased. Treatment with SC extracts also increased sperm motility in human sperm. Our findings suggest that the SC ameliorate testicular dysfunction in VC-induced rats via crosstalk between oxidative stress, ER stress, and mitochondrial-mediated testicular germ cell apoptosis signaling pathways. SC promotes spermatogenesis by upregulating abnormal sex hormones and decreasing proinflammatory cytokines (interleukin-6; TNF-α).