Cargando…

Spatiotemporal organization and protein dynamics involved in regulated exocytosis of MMP-9 in breast cancer cells

Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosi...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephens, Dominique C., Osunsanmi, Nicole, Sochacki, Kem A., Powell, Tyrel W., Taraska, Justin W., Harris, Dinari A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888755/
https://www.ncbi.nlm.nih.gov/pubmed/31676484
http://dx.doi.org/10.1085/jgp.201812299
Descripción
Sumario:Altered regulation of exocytosis is an important mechanism controlling many diseases, including cancer. Defects in exocytosis have been implicated in many cancer cell types and are generally attributed to mutations in cellular transport, trafficking, and assembly of machinery necessary for exocytosis of secretory vesicle cargo. In these cancers, up-regulation of trafficking and secretion of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, is responsible for degrading the extracellular matrix, a necessary step in tumor progression. Using TIRF microscopy, we identified proteins associated with secretory vesicles containing MMP-9 and imaged the local dynamics of these proteins at fusion sites during regulated exocytosis of MMP-9 from MCF-7 breast cancer cells. We found that many regulators of exocytosis, including several Rab GTPases, Rab effector proteins, and SNARE/SNARE modulator proteins, are stably assembled on docked secretory vesicles before exocytosis. At the moment of fusion, many of these components are quickly lost from the vesicle, while several endocytic proteins and lipids are simultaneously recruited to exocytic sites at precisely that moment. Our findings provide insight into the dynamic behavior of key core exocytic proteins, accessory proteins, lipids, and some endocytic proteins at single sites of secretory vesicle fusion in breast cancer cells.