Cargando…
Hydration biomarkers and copeptin: relationship with ad libitum energy intake, energy expenditure, and metabolic fuel selection
BACKGROUND/OBJECTIVE: Evidence from non-human species indicate that hydration and arginine vasopressin (AVP) influence fuel selection, energy expenditure (EE), and food intake, but these relationships are unclear in humans. We sought to assess whether hydration biomarkers [24-h urine volume (UVol) a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888878/ https://www.ncbi.nlm.nih.gov/pubmed/31160665 http://dx.doi.org/10.1038/s41430-019-0445-6 |
Sumario: | BACKGROUND/OBJECTIVE: Evidence from non-human species indicate that hydration and arginine vasopressin (AVP) influence fuel selection, energy expenditure (EE), and food intake, but these relationships are unclear in humans. We sought to assess whether hydration biomarkers [24-h urine volume (UVol) and urine urea nitrogen concentration (UUN)] and copeptin (a surrogate for AVP) are associated with 24-h EE, respiratory quotient (RQ), and daily energy intake (DEI). SUBJECTS/METHODS: In a secondary analysis of collected data, we selected healthy adults (Group 1, n = 177) who had 24-h whole-room indirect calorimetry measurements in energy balance with 24-h urine collection and fasting copeptin measurements (n=117), followed by 3 days ad libitum food intake. A separate group (Group 2, n=284) with hydration markers and calorimetry measurements was also studied. The main outcome measures were 24-h RQ, 24-h EE, DEI, substrate oxidation. RESULTS: In Group 1, lower 24-h UVol and higher 24-h UUN, indicating lower hydration, were correlated with lower 24-h RQ (r = 0.35, p <0.0001, and r = −0.29, p = 0.0001, respectively; results similar in Group 2) and predicted subsequent reduced DEI (r = 0.20, p = 0.01, and r = −0.27, p = 0.0003, respectively), adjusted for confounders. Copeptin was independently associated with 24-h lipid oxidation (r = −0.23, p = 0.01). In Group 2, lower hydration was associated with reduced 24-h EE (24-h UVol: r = 0.29, p <0.0001; 24-h UUN: r = −0.25, p <0.0001). CONCLUSIONS: Hydration biomarkers were associated with metabolic differences characterized by altered food intake, fuel selection, and possibly EE. Independently, copeptin was associated with higher lipid oxidation. |
---|