Cargando…
Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder
In this manuscript we develop a deep learning algorithm to improve estimation of rates of progression and prediction of future patterns of visual field loss in glaucoma. A generalized variational auto-encoder (VAE) was trained to learn a low-dimensional representation of standard automated perimetry...
Autores principales: | Berchuck, Samuel I., Mukherjee, Sayan, Medeiros, Felipe A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888896/ https://www.ncbi.nlm.nih.gov/pubmed/31792321 http://dx.doi.org/10.1038/s41598-019-54653-6 |
Ejemplares similares
-
The usefulness of the Deep Learning method of variational autoencoder to reduce measurement noise in glaucomatous visual fields
por: Asaoka, Ryo, et al.
Publicado: (2020) -
Rates of Glaucoma Progression Derived from Linear Mixed Models Using Varied Random Effect Distributions
por: Swaminathan, Swarup S., et al.
Publicado: (2022) -
Visualizing population structure with variational autoencoders
por: Battey, C J, et al.
Publicado: (2021) -
Rates of visual field progression in clinical glaucoma care
por: Heijl, Anders, et al.
Publicado: (2012) -
The Relationship between Visual Field Index and Estimated Number of Retinal Ganglion Cells in Glaucoma
por: Marvasti, Amir H., et al.
Publicado: (2013)