Cargando…
Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism
This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array T...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Chongqing Medical University
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889044/ https://www.ncbi.nlm.nih.gov/pubmed/31832523 http://dx.doi.org/10.1016/j.gendis.2018.11.002 |
_version_ | 1783475344260464640 |
---|---|
author | Zhou, Yu Zhang, Deying Liu, Bo Hu, Dong Shen, Lianju Long, Chunlan Yu, Yihang Lin, Tao Liu, Xing He, Dawei Wei, Guanghui |
author_facet | Zhou, Yu Zhang, Deying Liu, Bo Hu, Dong Shen, Lianju Long, Chunlan Yu, Yihang Lin, Tao Liu, Xing He, Dawei Wei, Guanghui |
author_sort | Zhou, Yu |
collection | PubMed |
description | This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility. |
format | Online Article Text |
id | pubmed-6889044 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Chongqing Medical University |
record_format | MEDLINE/PubMed |
spelling | pubmed-68890442019-12-12 Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism Zhou, Yu Zhang, Deying Liu, Bo Hu, Dong Shen, Lianju Long, Chunlan Yu, Yihang Lin, Tao Liu, Xing He, Dawei Wei, Guanghui Genes Dis Article This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility. Chongqing Medical University 2018-11-14 /pmc/articles/PMC6889044/ /pubmed/31832523 http://dx.doi.org/10.1016/j.gendis.2018.11.002 Text en © 2018 Chongqing Medical University. Production and hosting by Elsevier B.V. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Zhou, Yu Zhang, Deying Liu, Bo Hu, Dong Shen, Lianju Long, Chunlan Yu, Yihang Lin, Tao Liu, Xing He, Dawei Wei, Guanghui Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title | Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title_full | Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title_fullStr | Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title_full_unstemmed | Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title_short | Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
title_sort | bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889044/ https://www.ncbi.nlm.nih.gov/pubmed/31832523 http://dx.doi.org/10.1016/j.gendis.2018.11.002 |
work_keys_str_mv | AT zhouyu bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT zhangdeying bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT liubo bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT hudong bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT shenlianju bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT longchunlan bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT yuyihang bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT lintao bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT liuxing bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT hedawei bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism AT weiguanghui bioinformaticidentificationofkeygenesandmolecularpathwaysinthespermatogenicprocessofcryptorchidism |