Cargando…

Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines

Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Tiannan, Luna, Augustin, Rajapakse, Vinodh N., Koh, Ching Chiek, Wu, Zhicheng, Liu, Wei, Sun, Yaoting, Gao, Huanhuan, Menden, Michael P., Xu, Chao, Calzone, Laurence, Martignetti, Loredana, Auwerx, Chiara, Buljan, Marija, Banaei-Esfahani, Amir, Ori, Alessandro, Iskar, Murat, Gillet, Ludovic, Bi, Ran, Zhang, Jiangnan, Zhang, Huanhuan, Yu, Chenhuan, Zhong, Qing, Varma, Sudhir, Schmitt, Uwe, Qiu, Peng, Zhang, Qiushi, Zhu, Yi, Wild, Peter J., Garnett, Mathew J., Bork, Peer, Beck, Martin, Liu, Kexin, Saez-Rodriguez, Julio, Elloumi, Fathi, Reinhold, William C., Sander, Chris, Pommier, Yves, Aebersold, Ruedi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889472/
https://www.ncbi.nlm.nih.gov/pubmed/31733513
http://dx.doi.org/10.1016/j.isci.2019.10.059
_version_ 1783475425050099712
author Guo, Tiannan
Luna, Augustin
Rajapakse, Vinodh N.
Koh, Ching Chiek
Wu, Zhicheng
Liu, Wei
Sun, Yaoting
Gao, Huanhuan
Menden, Michael P.
Xu, Chao
Calzone, Laurence
Martignetti, Loredana
Auwerx, Chiara
Buljan, Marija
Banaei-Esfahani, Amir
Ori, Alessandro
Iskar, Murat
Gillet, Ludovic
Bi, Ran
Zhang, Jiangnan
Zhang, Huanhuan
Yu, Chenhuan
Zhong, Qing
Varma, Sudhir
Schmitt, Uwe
Qiu, Peng
Zhang, Qiushi
Zhu, Yi
Wild, Peter J.
Garnett, Mathew J.
Bork, Peer
Beck, Martin
Liu, Kexin
Saez-Rodriguez, Julio
Elloumi, Fathi
Reinhold, William C.
Sander, Chris
Pommier, Yves
Aebersold, Ruedi
author_facet Guo, Tiannan
Luna, Augustin
Rajapakse, Vinodh N.
Koh, Ching Chiek
Wu, Zhicheng
Liu, Wei
Sun, Yaoting
Gao, Huanhuan
Menden, Michael P.
Xu, Chao
Calzone, Laurence
Martignetti, Loredana
Auwerx, Chiara
Buljan, Marija
Banaei-Esfahani, Amir
Ori, Alessandro
Iskar, Murat
Gillet, Ludovic
Bi, Ran
Zhang, Jiangnan
Zhang, Huanhuan
Yu, Chenhuan
Zhong, Qing
Varma, Sudhir
Schmitt, Uwe
Qiu, Peng
Zhang, Qiushi
Zhu, Yi
Wild, Peter J.
Garnett, Mathew J.
Bork, Peer
Beck, Martin
Liu, Kexin
Saez-Rodriguez, Julio
Elloumi, Fathi
Reinhold, William C.
Sander, Chris
Pommier, Yves
Aebersold, Ruedi
author_sort Guo, Tiannan
collection PubMed
description Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and systematic quantification of pathway activities. Stoichiometric relationships of interacting proteins for DNA replication, repair, the chromatin remodeling NuRD complex, β-catenin, RNA metabolism, and prefoldins are more evident than that at the mRNA level. The data are available in CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predicting drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In summary, we present a novel proteome resource for the NCI-60, together with relevant software tools, and demonstrate the benefit of proteome analyses.
format Online
Article
Text
id pubmed-6889472
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68894722019-12-11 Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines Guo, Tiannan Luna, Augustin Rajapakse, Vinodh N. Koh, Ching Chiek Wu, Zhicheng Liu, Wei Sun, Yaoting Gao, Huanhuan Menden, Michael P. Xu, Chao Calzone, Laurence Martignetti, Loredana Auwerx, Chiara Buljan, Marija Banaei-Esfahani, Amir Ori, Alessandro Iskar, Murat Gillet, Ludovic Bi, Ran Zhang, Jiangnan Zhang, Huanhuan Yu, Chenhuan Zhong, Qing Varma, Sudhir Schmitt, Uwe Qiu, Peng Zhang, Qiushi Zhu, Yi Wild, Peter J. Garnett, Mathew J. Bork, Peer Beck, Martin Liu, Kexin Saez-Rodriguez, Julio Elloumi, Fathi Reinhold, William C. Sander, Chris Pommier, Yves Aebersold, Ruedi iScience Article Here we describe a proteomic data resource for the NCI-60 cell lines generated by pressure cycling technology and SWATH mass spectrometry. We developed the DIA-expert software to curate and visualize the SWATH data, leading to reproducible detection of over 3,100 SwissProt proteotypic proteins and systematic quantification of pathway activities. Stoichiometric relationships of interacting proteins for DNA replication, repair, the chromatin remodeling NuRD complex, β-catenin, RNA metabolism, and prefoldins are more evident than that at the mRNA level. The data are available in CellMiner (discover.nci.nih.gov/cellminercdb and discover.nci.nih.gov/cellminer), allowing casual users to test hypotheses and perform integrative, cross-database analyses of multi-omic drug response correlations for over 20,000 drugs. We demonstrate the value of proteome data in predicting drug response for over 240 clinically relevant chemotherapeutic and targeted therapies. In summary, we present a novel proteome resource for the NCI-60, together with relevant software tools, and demonstrate the benefit of proteome analyses. Elsevier 2019-10-31 /pmc/articles/PMC6889472/ /pubmed/31733513 http://dx.doi.org/10.1016/j.isci.2019.10.059 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Guo, Tiannan
Luna, Augustin
Rajapakse, Vinodh N.
Koh, Ching Chiek
Wu, Zhicheng
Liu, Wei
Sun, Yaoting
Gao, Huanhuan
Menden, Michael P.
Xu, Chao
Calzone, Laurence
Martignetti, Loredana
Auwerx, Chiara
Buljan, Marija
Banaei-Esfahani, Amir
Ori, Alessandro
Iskar, Murat
Gillet, Ludovic
Bi, Ran
Zhang, Jiangnan
Zhang, Huanhuan
Yu, Chenhuan
Zhong, Qing
Varma, Sudhir
Schmitt, Uwe
Qiu, Peng
Zhang, Qiushi
Zhu, Yi
Wild, Peter J.
Garnett, Mathew J.
Bork, Peer
Beck, Martin
Liu, Kexin
Saez-Rodriguez, Julio
Elloumi, Fathi
Reinhold, William C.
Sander, Chris
Pommier, Yves
Aebersold, Ruedi
Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title_full Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title_fullStr Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title_full_unstemmed Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title_short Quantitative Proteome Landscape of the NCI-60 Cancer Cell Lines
title_sort quantitative proteome landscape of the nci-60 cancer cell lines
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889472/
https://www.ncbi.nlm.nih.gov/pubmed/31733513
http://dx.doi.org/10.1016/j.isci.2019.10.059
work_keys_str_mv AT guotiannan quantitativeproteomelandscapeofthenci60cancercelllines
AT lunaaugustin quantitativeproteomelandscapeofthenci60cancercelllines
AT rajapaksevinodhn quantitativeproteomelandscapeofthenci60cancercelllines
AT kohchingchiek quantitativeproteomelandscapeofthenci60cancercelllines
AT wuzhicheng quantitativeproteomelandscapeofthenci60cancercelllines
AT liuwei quantitativeproteomelandscapeofthenci60cancercelllines
AT sunyaoting quantitativeproteomelandscapeofthenci60cancercelllines
AT gaohuanhuan quantitativeproteomelandscapeofthenci60cancercelllines
AT mendenmichaelp quantitativeproteomelandscapeofthenci60cancercelllines
AT xuchao quantitativeproteomelandscapeofthenci60cancercelllines
AT calzonelaurence quantitativeproteomelandscapeofthenci60cancercelllines
AT martignettiloredana quantitativeproteomelandscapeofthenci60cancercelllines
AT auwerxchiara quantitativeproteomelandscapeofthenci60cancercelllines
AT buljanmarija quantitativeproteomelandscapeofthenci60cancercelllines
AT banaeiesfahaniamir quantitativeproteomelandscapeofthenci60cancercelllines
AT orialessandro quantitativeproteomelandscapeofthenci60cancercelllines
AT iskarmurat quantitativeproteomelandscapeofthenci60cancercelllines
AT gilletludovic quantitativeproteomelandscapeofthenci60cancercelllines
AT biran quantitativeproteomelandscapeofthenci60cancercelllines
AT zhangjiangnan quantitativeproteomelandscapeofthenci60cancercelllines
AT zhanghuanhuan quantitativeproteomelandscapeofthenci60cancercelllines
AT yuchenhuan quantitativeproteomelandscapeofthenci60cancercelllines
AT zhongqing quantitativeproteomelandscapeofthenci60cancercelllines
AT varmasudhir quantitativeproteomelandscapeofthenci60cancercelllines
AT schmittuwe quantitativeproteomelandscapeofthenci60cancercelllines
AT qiupeng quantitativeproteomelandscapeofthenci60cancercelllines
AT zhangqiushi quantitativeproteomelandscapeofthenci60cancercelllines
AT zhuyi quantitativeproteomelandscapeofthenci60cancercelllines
AT wildpeterj quantitativeproteomelandscapeofthenci60cancercelllines
AT garnettmathewj quantitativeproteomelandscapeofthenci60cancercelllines
AT borkpeer quantitativeproteomelandscapeofthenci60cancercelllines
AT beckmartin quantitativeproteomelandscapeofthenci60cancercelllines
AT liukexin quantitativeproteomelandscapeofthenci60cancercelllines
AT saezrodriguezjulio quantitativeproteomelandscapeofthenci60cancercelllines
AT elloumifathi quantitativeproteomelandscapeofthenci60cancercelllines
AT reinholdwilliamc quantitativeproteomelandscapeofthenci60cancercelllines
AT sanderchris quantitativeproteomelandscapeofthenci60cancercelllines
AT pommieryves quantitativeproteomelandscapeofthenci60cancercelllines
AT aebersoldruedi quantitativeproteomelandscapeofthenci60cancercelllines