Cargando…

Exploring the microbial biotransformation of extraterrestrial material on nanometer scale

Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale in...

Descripción completa

Detalles Bibliográficos
Autores principales: Milojevic, Tetyana, Kölbl, Denise, Ferrière, Ludovic, Albu, Mihaela, Kish, Adrienne, Flemming, Roberta L., Koeberl, Christian, Blazevic, Amir, Zebec, Ziga, Rittmann, Simon K.-M. R., Schleper, Christa, Pignitter, Marc, Somoza, Veronika, Schimak, Mario P., Rupert, Alexandra N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889503/
https://www.ncbi.nlm.nih.gov/pubmed/31792265
http://dx.doi.org/10.1038/s41598-019-54482-7
Descripción
Sumario:Exploration of microbial-meteorite redox interactions highlights the possibility of bioprocessing of extraterrestrial metal resources and reveals specific microbial fingerprints left on extraterrestrial material. In the present study, we provide our observations on a microbial-meteorite nanoscale interface of the metal respiring thermoacidophile Metallosphaera sedula. M. sedula colonizes the stony meteorite Northwest Africa 1172 (NWA 1172; an H5 ordinary chondrite) and releases free soluble metals, with Ni ions as the most solubilized. We show the redox route of Ni ions, originating from the metallic Ni° of the meteorite grains and leading to released soluble Ni(2+). Nanoscale resolution ultrastructural studies of meteorite grown M. sedula coupled to electron energy loss spectroscopy (EELS) points to the redox processing of Fe-bearing meteorite material. Our investigations validate the ability of M. sedula to perform the biotransformation of meteorite minerals, unravel microbial fingerprints left on meteorite material, and provide the next step towards an understanding of meteorite biogeochemistry. Our findings will serve in defining mineralogical and morphological criteria for the identification of metal-containing microfossils.