Cargando…
Recent advances in melanin-like nanomaterials in biomedical applications: a mini review
BACKGROUND: Melanins are a group of biopigments in microorganisms that generate a wide range of colorants. Due to their multifunctionality, including ultraviolet protection, radical scavenging, and photothermal conversion, in addition to their intrinsic biocompatibility, natural melanins and synthet...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889561/ https://www.ncbi.nlm.nih.gov/pubmed/31827881 http://dx.doi.org/10.1186/s40824-019-0175-9 |
Sumario: | BACKGROUND: Melanins are a group of biopigments in microorganisms that generate a wide range of colorants. Due to their multifunctionality, including ultraviolet protection, radical scavenging, and photothermal conversion, in addition to their intrinsic biocompatibility, natural melanins and synthetic melanin-like nanomaterials have been suggested as novel nano-bio platforms in biomedical applications. MAIN BODY: Recent approaches in the synthesis of melanin-like nanomaterials and their biomedical applications have briefly been reviewed. Melanin-like nanomaterials have been suggested as endogenous chromophores for photoacoustic imaging and radical scavengers for the treatment of inflammatory diseases. The photothermal conversion ability of these materials under near-infrared irradiation allows hyperthermia-mediated cancer treatments, and their intrinsic fluorescence can be an indicator in biosensing applications. Furthermore, catechol-rich melanin and melanin-like nanomaterials possess a versatile affinity for various functional organic and inorganic additives, allowing the design of multifunctional hybrid nanomaterials that expand their range of applications in bioimaging, therapy, theranostics, and biosensing. CONCLUSION: Melanin-like natural and synthetic nanomaterials have emerged; however, the under-elucidated chemical structures of these materials are still a major obstacle to the construction of novel nanomaterials through bottom-up approaches and tuning the material properties at the molecular level. Further advancements in melanin-based medical applications can be achieved with the incorporation of next-generation chemical and molecular analytical tools. |
---|