Cargando…
Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy
A better understanding of how microenvironmental factors regulate cancer dormancy is needed for development of new therapeutic strategies to control metastatic recurrence and disease progression. Modeling cancer dormancy using engineered, in vitro platforms is necessary for investigation under well-...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889770/ https://www.ncbi.nlm.nih.gov/pubmed/31828024 http://dx.doi.org/10.1016/j.mex.2019.11.011 |
_version_ | 1783475491147087872 |
---|---|
author | Pradhan, Shantanu Slater, John H. |
author_facet | Pradhan, Shantanu Slater, John H. |
author_sort | Pradhan, Shantanu |
collection | PubMed |
description | A better understanding of how microenvironmental factors regulate cancer dormancy is needed for development of new therapeutic strategies to control metastatic recurrence and disease progression. Modeling cancer dormancy using engineered, in vitro platforms is necessary for investigation under well-defined and well-controlled microenvironments. We present methods and protocols to fabricate, characterize, and implement engineered hydrogels with well-defined biochemical and physical properties for control over breast cancer cell phenotype in three-dimensional (3D) culture. Changes in hydrogel adhesivity, crosslink density, and degradability induce a range of phenotypic behaviors in breast cancer cells including: (1) high growth, (2) moderate growth, (3) single cell, restricted survival dormancy, and (4) balanced dormancy. We describe a method of classifying hydrogel formulations that support each of these phenotypic states. We also describe a method to phenotypically switch cancer cells from single cell dormancy to high growth by dynamically modulating ligand density, thereby recapitulating reactivation and metastatic recurrence. |
format | Online Article Text |
id | pubmed-6889770 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68897702019-12-11 Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy Pradhan, Shantanu Slater, John H. MethodsX Engineering A better understanding of how microenvironmental factors regulate cancer dormancy is needed for development of new therapeutic strategies to control metastatic recurrence and disease progression. Modeling cancer dormancy using engineered, in vitro platforms is necessary for investigation under well-defined and well-controlled microenvironments. We present methods and protocols to fabricate, characterize, and implement engineered hydrogels with well-defined biochemical and physical properties for control over breast cancer cell phenotype in three-dimensional (3D) culture. Changes in hydrogel adhesivity, crosslink density, and degradability induce a range of phenotypic behaviors in breast cancer cells including: (1) high growth, (2) moderate growth, (3) single cell, restricted survival dormancy, and (4) balanced dormancy. We describe a method of classifying hydrogel formulations that support each of these phenotypic states. We also describe a method to phenotypically switch cancer cells from single cell dormancy to high growth by dynamically modulating ligand density, thereby recapitulating reactivation and metastatic recurrence. Elsevier 2019-11-13 /pmc/articles/PMC6889770/ /pubmed/31828024 http://dx.doi.org/10.1016/j.mex.2019.11.011 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Engineering Pradhan, Shantanu Slater, John H. Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title | Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title_full | Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title_fullStr | Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title_full_unstemmed | Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title_short | Fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
title_sort | fabrication, characterization, and implementation of engineered hydrogels for controlling breast cancer cell phenotype and dormancy |
topic | Engineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889770/ https://www.ncbi.nlm.nih.gov/pubmed/31828024 http://dx.doi.org/10.1016/j.mex.2019.11.011 |
work_keys_str_mv | AT pradhanshantanu fabricationcharacterizationandimplementationofengineeredhydrogelsforcontrollingbreastcancercellphenotypeanddormancy AT slaterjohnh fabricationcharacterizationandimplementationofengineeredhydrogelsforcontrollingbreastcancercellphenotypeanddormancy |