Cargando…
A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteri...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890259/ https://www.ncbi.nlm.nih.gov/pubmed/31581241 http://dx.doi.org/10.1371/journal.pcbi.1007400 |
_version_ | 1783475574665117696 |
---|---|
author | O’Donovan, Shauna D. Lenz, Michael Vink, Roel G. Roumans, Nadia J. T. de Kok, Theo M. C. M. Mariman, Edwin C. M. Peeters, Ralf L. M. van Riel, Natal A. W. van Baak, Marleen A. Arts, Ilja C. W. |
author_facet | O’Donovan, Shauna D. Lenz, Michael Vink, Roel G. Roumans, Nadia J. T. de Kok, Theo M. C. M. Mariman, Edwin C. M. Peeters, Ralf L. M. van Riel, Natal A. W. van Baak, Marleen A. Arts, Ilja C. W. |
author_sort | O’Donovan, Shauna D. |
collection | PubMed |
description | Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model’s delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction. |
format | Online Article Text |
id | pubmed-6890259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-68902592019-12-13 A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data O’Donovan, Shauna D. Lenz, Michael Vink, Roel G. Roumans, Nadia J. T. de Kok, Theo M. C. M. Mariman, Edwin C. M. Peeters, Ralf L. M. van Riel, Natal A. W. van Baak, Marleen A. Arts, Ilja C. W. PLoS Comput Biol Research Article Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model’s delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction. Public Library of Science 2019-10-03 /pmc/articles/PMC6890259/ /pubmed/31581241 http://dx.doi.org/10.1371/journal.pcbi.1007400 Text en © 2019 O’Donovan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article O’Donovan, Shauna D. Lenz, Michael Vink, Roel G. Roumans, Nadia J. T. de Kok, Theo M. C. M. Mariman, Edwin C. M. Peeters, Ralf L. M. van Riel, Natal A. W. van Baak, Marleen A. Arts, Ilja C. W. A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title | A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title_full | A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title_fullStr | A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title_full_unstemmed | A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title_short | A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
title_sort | computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890259/ https://www.ncbi.nlm.nih.gov/pubmed/31581241 http://dx.doi.org/10.1371/journal.pcbi.1007400 |
work_keys_str_mv | AT odonovanshaunad acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT lenzmichael acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vinkroelg acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT roumansnadiajt acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT dekoktheomcm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT marimanedwincm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT peetersralflm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vanrielnatalaw acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vanbaakmarleena acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT artsiljacw acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT odonovanshaunad computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT lenzmichael computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vinkroelg computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT roumansnadiajt computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT dekoktheomcm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT marimanedwincm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT peetersralflm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vanrielnatalaw computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT vanbaakmarleena computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata AT artsiljacw computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata |