Cargando…

A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data

Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteri...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Donovan, Shauna D., Lenz, Michael, Vink, Roel G., Roumans, Nadia J. T., de Kok, Theo M. C. M., Mariman, Edwin C. M., Peeters, Ralf L. M., van Riel, Natal A. W., van Baak, Marleen A., Arts, Ilja C. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890259/
https://www.ncbi.nlm.nih.gov/pubmed/31581241
http://dx.doi.org/10.1371/journal.pcbi.1007400
_version_ 1783475574665117696
author O’Donovan, Shauna D.
Lenz, Michael
Vink, Roel G.
Roumans, Nadia J. T.
de Kok, Theo M. C. M.
Mariman, Edwin C. M.
Peeters, Ralf L. M.
van Riel, Natal A. W.
van Baak, Marleen A.
Arts, Ilja C. W.
author_facet O’Donovan, Shauna D.
Lenz, Michael
Vink, Roel G.
Roumans, Nadia J. T.
de Kok, Theo M. C. M.
Mariman, Edwin C. M.
Peeters, Ralf L. M.
van Riel, Natal A. W.
van Baak, Marleen A.
Arts, Ilja C. W.
author_sort O’Donovan, Shauna D.
collection PubMed
description Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model’s delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction.
format Online
Article
Text
id pubmed-6890259
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-68902592019-12-13 A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data O’Donovan, Shauna D. Lenz, Michael Vink, Roel G. Roumans, Nadia J. T. de Kok, Theo M. C. M. Mariman, Edwin C. M. Peeters, Ralf L. M. van Riel, Natal A. W. van Baak, Marleen A. Arts, Ilja C. W. PLoS Comput Biol Research Article Given the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes. We then applied our refined model to human adipose tissue flux data collected before and after a diet intervention as part of the Yoyo study, to quantify the effects of caloric restriction on postprandial adipose tissue metabolism. Significant increases were observed in the model parameters describing the rate of uptake and release of both glycerol and NEFA. Additionally, decreases in the model’s delay in insulin signalling parameters indicates there is an improvement in adipose tissue insulin sensitivity following caloric restriction. Public Library of Science 2019-10-03 /pmc/articles/PMC6890259/ /pubmed/31581241 http://dx.doi.org/10.1371/journal.pcbi.1007400 Text en © 2019 O’Donovan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
O’Donovan, Shauna D.
Lenz, Michael
Vink, Roel G.
Roumans, Nadia J. T.
de Kok, Theo M. C. M.
Mariman, Edwin C. M.
Peeters, Ralf L. M.
van Riel, Natal A. W.
van Baak, Marleen A.
Arts, Ilja C. W.
A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title_full A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title_fullStr A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title_full_unstemmed A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title_short A computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
title_sort computational model of postprandial adipose tissue lipid metabolism derived using human arteriovenous stable isotope tracer data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890259/
https://www.ncbi.nlm.nih.gov/pubmed/31581241
http://dx.doi.org/10.1371/journal.pcbi.1007400
work_keys_str_mv AT odonovanshaunad acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT lenzmichael acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vinkroelg acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT roumansnadiajt acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT dekoktheomcm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT marimanedwincm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT peetersralflm acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vanrielnatalaw acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vanbaakmarleena acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT artsiljacw acomputationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT odonovanshaunad computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT lenzmichael computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vinkroelg computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT roumansnadiajt computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT dekoktheomcm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT marimanedwincm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT peetersralflm computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vanrielnatalaw computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT vanbaakmarleena computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata
AT artsiljacw computationalmodelofpostprandialadiposetissuelipidmetabolismderivedusinghumanarteriovenousstableisotopetracerdata