Cargando…

Screening and identification of key biomarkers in nasopharyngeal carcinoma: Evidence from bioinformatic analysis

As for the lack of simple and effective diagnostic methods at the early of the nasopharyngeal carcinoma (NPC), the mortality rate of NPC still remains high. Therefore, it is meaningful to explore the precise molecular mechanisms involved in the proliferation, carcinogenesis, and recurrence of NPC an...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ji-Zhou, Wu, Zeng-Hong, Cheng, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890310/
https://www.ncbi.nlm.nih.gov/pubmed/31770211
http://dx.doi.org/10.1097/MD.0000000000017997
Descripción
Sumario:As for the lack of simple and effective diagnostic methods at the early of the nasopharyngeal carcinoma (NPC), the mortality rate of NPC still remains high. Therefore, it is meaningful to explore the precise molecular mechanisms involved in the proliferation, carcinogenesis, and recurrence of NPC and thus find an effective diagnostic way and make a better therapeutic strategy. Three gene expression data sets (GSE64634, GSE53819, and GSE12452) were downloaded from Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEGs were performed in Database for Annotation, Visualization and Integrated Discovery. The Search Tool for the Retrieval of Interacting Genes database was used to evaluate the interactions of DEGs and to construct a protein–protein interaction network using Cytoscape software. Hub genes were validated with the cBioPortal database. The overlap among the 3 data sets contained 306 genes were identified to be differentially expressed between NPC and non-NPC samples. A total of 13 genes (DNAAF1, PARPBP, TTC18, GSTA3, RCN1, MUC5AC, POU2AF1, FAM83B, SLC22A16, SPEF2, ERICH3, CCDC81, and IL33) were identified as hub genes with degrees ≥10. The present study was attempted to identify and functionally analyze the DEGs that may be involved in the carcinogenesis or progression of NPC by using comprehensive bioinformatics analyses and unveiled a series of hub genes and pathways. A total of 306 DEGs and 13 hub genes were identified and may be regarded as diagnostic biomarkers for NPC. However, more experimental studies are needed to carried out elucidate the biologic function of these genes results for NPC.