Cargando…
Near‐infrared photoimmunotherapy through bone
Near‐infrared photoimmunotherapy (NIR‐PIT) is a molecularly targeted cancer phototherapy that is based on injecting a conjugate of a silicon‐phthalocyanine derivative, IRdye 700DX (IR700), and a monoclonal antibody that targets an expressed antigen on the cancer cell surface. Subsequent local exposu...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890452/ https://www.ncbi.nlm.nih.gov/pubmed/31553485 http://dx.doi.org/10.1111/cas.14203 |
Sumario: | Near‐infrared photoimmunotherapy (NIR‐PIT) is a molecularly targeted cancer phototherapy that is based on injecting a conjugate of a silicon‐phthalocyanine derivative, IRdye 700DX (IR700), and a monoclonal antibody that targets an expressed antigen on the cancer cell surface. Subsequent local exposure to NIR light results in the rapid and highly selective immunogenic cell death of targeted cancer cells. Because many cancers grow in bones through which light does not penetrate well, the goal of this study was to determine if NIR‐PIT can effectively treat cancers in bone. A bovine rib was used as a bone sample. Because the sample’s NIR light transmittance was shown to be approximately 4.52% in preliminary tests, it was hypothesized that a maximum radiation dosage of 128 and 1500 J/cm(2) would be sufficient to induce cell death in in vitro target cells and in vivo mouse tumor models, respectively. Cell viability was measured through bioluminescence studies comparing relative luciferase activity, as well as a cytotoxicity assay. In the in vitro model, tumor cell viability was significantly decreased after 64 and 128 J/cm(2) NIR light irradiation through the bone. An in vivo mouse tumor model also showed that 1500 J/cm(2) NIR light irradiation through the bone significantly reduced tumor viability at both 24 and 48 hours posttreatment compared to the control group (P = .026 and .040 respectively). Therefore, despite limitations in light transmission, NIR‐PIT nevertheless is capable of effectively treating cancers within bone. |
---|