Cargando…
Modifications of Glass Ionomer Cement Powder by Addition of Recently Fabricated Nano-Fillers and Their Effect on the Properties: A Review
The aim of this article is to provide a brief insight regarding the recent studies and their recommendations related to the modifications to glass ionomer cement (GIC) powder in order to improve their properties. An electronic search of publications was made from the year 2000 to 2018. The databases...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Thieme Medical and Scientific Publishers Private Ltd.
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890502/ https://www.ncbi.nlm.nih.gov/pubmed/31280484 http://dx.doi.org/10.1055/s-0039-1693524 |
Sumario: | The aim of this article is to provide a brief insight regarding the recent studies and their recommendations related to the modifications to glass ionomer cement (GIC) powder in order to improve their properties. An electronic search of publications was made from the year 2000 to 2018. The databases included in the current study were EBSCOhost, PubMed, and ScienceDirect. The inclusion criteria for the current study include publication with abstract or full-text articles, original research, reviews or systematic reviews, in vitro, and in vivo studies that were written in English language. Among these only articles published in peer-reviewed journals were included. Articles published in other languages, with no available abstract and related to other nondentistry fields, were excluded. A detailed review of the recent materials used as a filler phase in GIC powder has revealed that not all modifications produce beneficial results. Recent work has demonstrated that modification of GIC powder with nano-particles has many beneficial effects on the properties of the material. This is due to the increase in surface area and surface energy, along with better particle distribution of the nano-particle. Therefore, more focus should be given on nano-particle having greater chemical affinity for GIC matrix as well as the tooth structure that will enhance the physicochemical properties of GIC. |
---|