Cargando…

The modulation of event-related alpha rhythm during the time course of anticipation

Anticipation is the ability to accurately predict future actions or events ahead of the act itself. When attempting to anticipate, researchers have identified that at least two broad sources of information are used: contextual information relating to the situation in question; and biological motion...

Descripción completa

Detalles Bibliográficos
Autores principales: Simonet, Marie, Meziane, Hadj Boumediene, Runswick, Oliver Richard, North, Jamie Stephen, Williams, Andrew Mark, Barral, Jérôme, Roca, André
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890640/
https://www.ncbi.nlm.nih.gov/pubmed/31796879
http://dx.doi.org/10.1038/s41598-019-54763-1
Descripción
Sumario:Anticipation is the ability to accurately predict future actions or events ahead of the act itself. When attempting to anticipate, researchers have identified that at least two broad sources of information are used: contextual information relating to the situation in question; and biological motion from postural cues. However, the neural correlates associated with the processing of these different sources of information across groups varying in expertise has yet to be examined empirically. We compared anticipation performance and electrophysiological activity in groups of expert (n = 12) and novice (n = 15) performers using a video-based task. Participants made anticipation judgements after being presented information under three conditions: contextual information only; kinematic information only; and both sources of information combined. The experts responded more accurately across all three conditions. Stronger alpha event-related desynchronization over occipital and frontocentral sites occurred in experts compared to the novices when anticipating. The experts relied on stronger preparatory attentional mechanisms when they processed contextual information. When kinematic information was available, the domain specific motor representations built up over many years of practice likely underpinned expertise. Our findings have implications for those interested in identifying and subsequently, enhancing the neural mechanisms involved in anticipation.