Cargando…
Identifying Ear Abnormality from 2D Photographs Using Convolutional Neural Networks
Quantifying ear deformity using linear measurements and mathematical modeling is difficult due to the ear’s complex shape. Machine learning techniques, such as convolutional neural networks (CNNs), are well-suited for this role. CNNs are deep learning methods capable of finding complex patterns from...
Autores principales: | Hallac, Rami R., Lee, Jeon, Pressler, Mark, Seaward, James R., Kane, Alex A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890688/ https://www.ncbi.nlm.nih.gov/pubmed/31796839 http://dx.doi.org/10.1038/s41598-019-54779-7 |
Ejemplares similares
-
Assessing outcomes of ear molding therapy by health care providers and convolutional neural network
por: Hallac, Rami R., et al.
Publicado: (2021) -
Abstract QS1: 3D Imaging Of Vascular Anomalies Using Raster-Scanning Optoacoustic Mesoscopy
por: Geisler, Emily L., et al.
Publicado: (2020) -
Abstract: Assessing Soft Palate Movement at 15 Frames per Second Using Real-Time MRI
por: Hallac, Rami R., et al.
Publicado: (2018) -
Efficacy of rhBMP-2 and Allograft Cellular Bone Matrix in the Revision of Alveolar Bone Grafting
por: Harrison, Lucas, et al.
Publicado: (2023) -
Comparison of an unsupervised machine learning algorithm and surgeon diagnosis in the clinical differentiation of metopic craniosynostosis and benign metopic ridge
por: Cho, Min-Jeong, et al.
Publicado: (2018)