Cargando…
Residual convolutional neural network for predicting response of transarterial chemoembolization in hepatocellular carcinoma from CT imaging
BACKGROUND: We attempted to train and validate a model of deep learning for the preoperative prediction of the response of patients with intermediate-stage hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). METHOD: All computed tomography (CT) images were acquired for...
Autores principales: | Peng, Jie, Kang, Shuai, Ning, Zhengyuan, Deng, Hangxia, Shen, Jingxian, Xu, Yikai, Zhang, Jing, Zhao, Wei, Li, Xinling, Gong, Wuxing, Huang, Jinhua, Liu, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890698/ https://www.ncbi.nlm.nih.gov/pubmed/31332558 http://dx.doi.org/10.1007/s00330-019-06318-1 |
Ejemplares similares
-
Response prediction of hepatocellular carcinoma undergoing transcatheter arterial chemoembolization: unlocking the potential of CT texture analysis through nested decision tree models
por: Vosshenrich, Jan, et al.
Publicado: (2020) -
Development and validation of a pyradiomics signature to predict initial treatment response and prognosis during transarterial chemoembolization in hepatocellular carcinoma
por: Peng, Jie, et al.
Publicado: (2022) -
Ultra-low-dose chest CT imaging of COVID-19 patients using a deep residual neural network
por: Shiri, Isaac, et al.
Publicado: (2020) -
A fully automatic artificial intelligence–based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis
por: Yan, Chenggong, et al.
Publicado: (2021) -
Quantitative dual-energy CT for evaluating hepatocellular carcinoma after transarterial chemoembolization
por: Yue, Xiaofei, et al.
Publicado: (2021)