Cargando…

Single-spin qubits in isotopically enriched silicon at low magnetic field

Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Altern...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, R., Tanttu, T., Tan, K. Y., Hensen, B., Chan, K. W., Hwang, J. C. C., Leon, R. C. C., Yang, C. H., Gilbert, W., Hudson, F. E., Itoh, K. M., Kiselev, A. A., Ladd, T. D., Morello, A., Laucht, A., Dzurak, A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890755/
https://www.ncbi.nlm.nih.gov/pubmed/31796728
http://dx.doi.org/10.1038/s41467-019-13416-7
Descripción
Sumario:Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text]  μs and [Formula: see text]  μs at 150 mT. Their coherence is limited by spin flips of residual (29)Si nuclei in the isotopically enriched (28)Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.