Cargando…

Single-spin qubits in isotopically enriched silicon at low magnetic field

Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Altern...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, R., Tanttu, T., Tan, K. Y., Hensen, B., Chan, K. W., Hwang, J. C. C., Leon, R. C. C., Yang, C. H., Gilbert, W., Hudson, F. E., Itoh, K. M., Kiselev, A. A., Ladd, T. D., Morello, A., Laucht, A., Dzurak, A. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890755/
https://www.ncbi.nlm.nih.gov/pubmed/31796728
http://dx.doi.org/10.1038/s41467-019-13416-7
_version_ 1783475678172151808
author Zhao, R.
Tanttu, T.
Tan, K. Y.
Hensen, B.
Chan, K. W.
Hwang, J. C. C.
Leon, R. C. C.
Yang, C. H.
Gilbert, W.
Hudson, F. E.
Itoh, K. M.
Kiselev, A. A.
Ladd, T. D.
Morello, A.
Laucht, A.
Dzurak, A. S.
author_facet Zhao, R.
Tanttu, T.
Tan, K. Y.
Hensen, B.
Chan, K. W.
Hwang, J. C. C.
Leon, R. C. C.
Yang, C. H.
Gilbert, W.
Hudson, F. E.
Itoh, K. M.
Kiselev, A. A.
Ladd, T. D.
Morello, A.
Laucht, A.
Dzurak, A. S.
author_sort Zhao, R.
collection PubMed
description Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text]  μs and [Formula: see text]  μs at 150 mT. Their coherence is limited by spin flips of residual (29)Si nuclei in the isotopically enriched (28)Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.
format Online
Article
Text
id pubmed-6890755
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68907552019-12-05 Single-spin qubits in isotopically enriched silicon at low magnetic field Zhao, R. Tanttu, T. Tan, K. Y. Hensen, B. Chan, K. W. Hwang, J. C. C. Leon, R. C. C. Yang, C. H. Gilbert, W. Hudson, F. E. Itoh, K. M. Kiselev, A. A. Ladd, T. D. Morello, A. Laucht, A. Dzurak, A. S. Nat Commun Article Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text]  μs and [Formula: see text]  μs at 150 mT. Their coherence is limited by spin flips of residual (29)Si nuclei in the isotopically enriched (28)Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor. Nature Publishing Group UK 2019-12-03 /pmc/articles/PMC6890755/ /pubmed/31796728 http://dx.doi.org/10.1038/s41467-019-13416-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhao, R.
Tanttu, T.
Tan, K. Y.
Hensen, B.
Chan, K. W.
Hwang, J. C. C.
Leon, R. C. C.
Yang, C. H.
Gilbert, W.
Hudson, F. E.
Itoh, K. M.
Kiselev, A. A.
Ladd, T. D.
Morello, A.
Laucht, A.
Dzurak, A. S.
Single-spin qubits in isotopically enriched silicon at low magnetic field
title Single-spin qubits in isotopically enriched silicon at low magnetic field
title_full Single-spin qubits in isotopically enriched silicon at low magnetic field
title_fullStr Single-spin qubits in isotopically enriched silicon at low magnetic field
title_full_unstemmed Single-spin qubits in isotopically enriched silicon at low magnetic field
title_short Single-spin qubits in isotopically enriched silicon at low magnetic field
title_sort single-spin qubits in isotopically enriched silicon at low magnetic field
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890755/
https://www.ncbi.nlm.nih.gov/pubmed/31796728
http://dx.doi.org/10.1038/s41467-019-13416-7
work_keys_str_mv AT zhaor singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT tanttut singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT tanky singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT hensenb singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT chankw singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT hwangjcc singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT leonrcc singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT yangch singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT gilbertw singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT hudsonfe singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT itohkm singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT kiselevaa singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT laddtd singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT morelloa singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT lauchta singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield
AT dzurakas singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield