Cargando…
Single-spin qubits in isotopically enriched silicon at low magnetic field
Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Altern...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890755/ https://www.ncbi.nlm.nih.gov/pubmed/31796728 http://dx.doi.org/10.1038/s41467-019-13416-7 |
_version_ | 1783475678172151808 |
---|---|
author | Zhao, R. Tanttu, T. Tan, K. Y. Hensen, B. Chan, K. W. Hwang, J. C. C. Leon, R. C. C. Yang, C. H. Gilbert, W. Hudson, F. E. Itoh, K. M. Kiselev, A. A. Ladd, T. D. Morello, A. Laucht, A. Dzurak, A. S. |
author_facet | Zhao, R. Tanttu, T. Tan, K. Y. Hensen, B. Chan, K. W. Hwang, J. C. C. Leon, R. C. C. Yang, C. H. Gilbert, W. Hudson, F. E. Itoh, K. M. Kiselev, A. A. Ladd, T. D. Morello, A. Laucht, A. Dzurak, A. S. |
author_sort | Zhao, R. |
collection | PubMed |
description | Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] μs and [Formula: see text] μs at 150 mT. Their coherence is limited by spin flips of residual (29)Si nuclei in the isotopically enriched (28)Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor. |
format | Online Article Text |
id | pubmed-6890755 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68907552019-12-05 Single-spin qubits in isotopically enriched silicon at low magnetic field Zhao, R. Tanttu, T. Tan, K. Y. Hensen, B. Chan, K. W. Hwang, J. C. C. Leon, R. C. C. Yang, C. H. Gilbert, W. Hudson, F. E. Itoh, K. M. Kiselev, A. A. Ladd, T. D. Morello, A. Laucht, A. Dzurak, A. S. Nat Commun Article Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] μs and [Formula: see text] μs at 150 mT. Their coherence is limited by spin flips of residual (29)Si nuclei in the isotopically enriched (28)Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor. Nature Publishing Group UK 2019-12-03 /pmc/articles/PMC6890755/ /pubmed/31796728 http://dx.doi.org/10.1038/s41467-019-13416-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Zhao, R. Tanttu, T. Tan, K. Y. Hensen, B. Chan, K. W. Hwang, J. C. C. Leon, R. C. C. Yang, C. H. Gilbert, W. Hudson, F. E. Itoh, K. M. Kiselev, A. A. Ladd, T. D. Morello, A. Laucht, A. Dzurak, A. S. Single-spin qubits in isotopically enriched silicon at low magnetic field |
title | Single-spin qubits in isotopically enriched silicon at low magnetic field |
title_full | Single-spin qubits in isotopically enriched silicon at low magnetic field |
title_fullStr | Single-spin qubits in isotopically enriched silicon at low magnetic field |
title_full_unstemmed | Single-spin qubits in isotopically enriched silicon at low magnetic field |
title_short | Single-spin qubits in isotopically enriched silicon at low magnetic field |
title_sort | single-spin qubits in isotopically enriched silicon at low magnetic field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6890755/ https://www.ncbi.nlm.nih.gov/pubmed/31796728 http://dx.doi.org/10.1038/s41467-019-13416-7 |
work_keys_str_mv | AT zhaor singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT tanttut singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT tanky singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT hensenb singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT chankw singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT hwangjcc singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT leonrcc singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT yangch singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT gilbertw singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT hudsonfe singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT itohkm singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT kiselevaa singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT laddtd singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT morelloa singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT lauchta singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield AT dzurakas singlespinqubitsinisotopicallyenrichedsiliconatlowmagneticfield |